Intramolecular Addition of Vinyl and Aryl Radicals to Oxime Ethers in the Synthesis of Five-, Six- and Seven-membered Ring Systems

Susan E. Booth, ${ }^{\boldsymbol{a}}$ Paul R. Jenkins, ${ }^{*, a}$ Christopher J. Swain ${ }^{\boldsymbol{b}}$ and Joseph B. Sweeney ${ }^{\boldsymbol{a}}$
${ }^{\text {a }}$ Department of Chemistry, The University, Leicester LE1 7RH, UK
${ }^{\text {b }}$ Merck, Sharp and Dohme, Terlings Park, Eastwick Road, Harlow, Essex CM20 2OR, UK

The oxime ethers 2a-e have been cyclised with $\mathrm{Bu}_{3} \mathrm{SnH}$ to the alkoxyamino-3-methylidenechromanes $3 \mathbf{a}-\mathbf{e}$. Seven-membered ring formation was observed when the oxime ethers 7a, b were converted into the dibenzo $[b, e]$ oxepines $\mathbf{8 a}, \mathrm{b}$ under similar conditions. 1-Methoxyaminoindanes 12a, b were produced from the cyclisation of the substrates $11 \mathrm{a}, \mathrm{b}$ and the cis-fused cyclic products $15 a, b$ and 18 were obtained from compounds $14 a, b$ and 17 , respectively.

The construction of carbocyclic rings using intramolecular radical cyclisation has become a common strategy in organic synthesis. ${ }^{1}$ The first example of the intramolecular trapping of a radical by an oxime ether was reported by Corey and Pyne in 1983. ${ }^{2}$ The particular advantage of using an oxime ether seems to lie in the extra stability of the alkoxy aminyl radical ($\mathrm{R}^{1} \ddot{\mathrm{O}}-\dot{N}-\mathrm{R}^{2}$) produced in the cyclisation. One possible explanation of this phenomenon is the stabilising effect on the aminyl radical by a lone pair on the adjacent oxygen. From the synthetic point of view the use of the oxime ether introduces a nitrogen atom onto the carbocyclic framework thus making this strategy suitable for the synthesis of alkaloids and related target molecules. More recently reports have appeared on the synthesis of five- and six-membered carbocyclic rings using this process. ${ }^{3}$ Our preliminary communication of part of these results ${ }^{4}$ was prompted by the report of Enholm et al. ${ }^{5}$ on the cyclisation of vinyl radicals onto oxime ethers. As part of a synthetic programme we undertook a study of the cyclisation of vinyl and aryl radicals onto oxime ethers and we now report the results in full.

Results and Discussion

The starting point for the investigation were the ethers $1 \mathbf{a}$ and \mathbf{b}, which were prepared by standard procedures. The aldehyde 1a was converted into three oxime ethers $2 \mathbf{a}-\mathbf{c}$, while the ketone $1 \mathbf{b}$ was used to produce the oxime ethers $\mathbf{2 d}$ and \mathbf{e}. When a benzene solution of azoisobutyronitrile (AIBN) was added via a syringe pump to a solution of the oxime ether 2 a and $\mathrm{Bu}_{3} \mathrm{SnH}$ in benzene (Method A, Scheme 1) efficient cyclisation to the methoxyamine 3a occurred. The oxime ethers $\mathbf{2 b}$ and \mathbf{c} were also effectively converted into the cyclised alkoxyamines $\mathbf{3 b}$ and \mathbf{c}, respectively, under the same conditions. However, only modest yields ($<35 \%$) of cyclised products 3d and e were obtained using this procedure on the oxime ethers $2 \mathbf{d}$ and \mathbf{e}. When 1 mol equiv. of AIBN was added to the benzene solution of the substrate and $\mathrm{Bu}_{3} \mathrm{SnH}$ (Method B) cyclisation to $\mathbf{3 d}$ and \mathbf{e} occurred in good yield.

We next investigated the generation of a vinyl radical by the addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ to the prop-2-ynyl ether 4 using a procedure first developed by Stork and Mook and applied by many other authors; ${ }^{6}$ although the ether 4 has been used many times before ${ }^{7}$ our synthesis differs from the procedure reported in the literature. ${ }^{8}$ The oxime ethers $5 a$ and b were prepared from the aldehyde 4; treatment of 5 a with $\mathrm{Bu}_{3} \mathrm{SnH}$ using Method A followed by destannylation with acetic acid resulted in the formation of the alkoxyamine $\mathbf{3 a}$, and this procedure was also followed to convert the oxime ether $\mathbf{5 b}$ into the alkoxyamine $\mathbf{3 b}$.

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{BrCH}_{2} \mathrm{CBr}=\mathrm{CH}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, $\mathrm{Me}_{2} \mathrm{CO}$, reflux 5 h ; ii, $\mathrm{R}^{2} \mathrm{ONH}_{2} \cdot \mathrm{HCl}$, pyridine, room temp.; iii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhH , reflux; iv, $\mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Me}_{2} \mathrm{CO}$, reflux; v, $\mathrm{MeCO}_{2} \mathrm{H}$; vi, 2-bromobenzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Me}_{2} \mathrm{CO}$, reflux

Presumably the $\mathrm{Bu}_{3} \mathrm{Sn}$ - adds to the terminal carbon of the acetylene producing a vinyl radical which cyclises in the usual way onto the oxime ether group. Treatment of the crude vinyl

16

17 78\%

18 58\%

Scheme 2 Reagents and conditions: i, $\mathrm{MeONH}_{2} \cdot \mathrm{HCl}$, pyridine, room temp.; ii, $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, benzene, reflux; iii, $\mathrm{NaH}, 2$-bromobenzyl bromide
stannane product with acetic acid causes destannylation giving the 3-methylidene substituted products 3 a and b .
The addition of an aryl radical to an oxime ether was investigated by the alkylation of 2-hydroxybenzaldehyde with 2-bromobenzyl bromide to give the aldehyde 6 which was converted into two oxime ethers $7 \mathbf{a}$ and \mathbf{b}. A solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in benzene was added, over 8 h using a syringe pump, to a refluxing solution of the oxime ether 7a to produce the methoxyamine $8 \mathbf{a}(49 \%$ yield) along with the reduction product $9 \mathbf{a}(29 \%)$. The cyclisation product 8 b and the reduction product 9b were obtained when the oxime ether $7 \mathbf{b}$ was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ under similar conditions in 47 and 36% yield, respectively. Two further examples of aromatic radical cyclisations are shown in Scheme 2. The aldehyde 10a and ketone 10b were prepared by standard procedures ${ }^{9}$ and converted into the oxime ethers 11a and b. Treatment of 11a
with $\mathrm{Bu}_{3} \mathrm{SnH}$ using Method C gave the indane 12a in 69% yield, and similar treatment of $\mathbf{1 1 b}$ produced $\mathbf{1 2 b}$ in 74% yield.
We next turned our attention to the synthesis of more complex cyclic products as shown in Scheme 2. Alkylation of ethyl 2-oxocyclopentanecarboxylate and ethyl 2-oxocyclohexanecarboxylate with 2-bromobenzyl bromide led to the keto esters 13a and b which were readily converted into the oxime ethers 14a and b. Single stereoisomers of these oxime ethers were obtained which we assume have the E-configuration with the OMe group anti to the adjacent quaternary carbon. The oxime ether 14a was treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ using method A to give the alkoxyamine 15 a in 68% yield. We assign the cis configuration to 15 a on the basis of ample literature precedent ${ }^{10}$ and a related radical cyclisation which has been shown to give the cis product. ${ }^{11}$ The analogous sequence starting from the substituted cyclohexanone 13b efficiently produced the cyclic product 15b which we assume to have the cis configuration by analogy to the cyclisation of 14a. Finally the ketone 16, prepared by alkylation of cyclohexanone enamine with 2-bromobenzyl bromide, was converted into the oxime ether 17 and cyclised to the alkoxyamine 18.

Experimental

All $90 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian EM390 spectrometer, high-field ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 MHz) spectra were recorded on a Bruker AM-300 spectrometer at the University of Leicester. Highfield ${ }^{1}$ H NMR (360 and 250 MHz) and ${ }^{13} \mathrm{C}$ NMR (90.5 and 63.5 MHz) spectra were recorded on Bruker AM-360 and Bruker AM-250 spectrometers at Merck, Sharp and Dohme, Harlow. COSY and NOE experiments were recorded using the highfield (400 MHz) NMR service at the University of Warwick. Standard mass spectra and accurate mass measurements were made at either the SERC Mass Spectrometry Centre, University College of Swansea or at Merck, Sharp and Dohme, Harlow. Elemental analysis was carried out by Butterworth Laboratories, Teddington, Middlesex. IR spectra were recorded on a PerkinElmer 298 spectrometer. Melting points were determined on a Kofler hot-stage apparatus and are uncorrected.

Flash chromatography was carried out according to the method of Still et al. ${ }^{12}$ using silica gel (Kiesel 60) manufactured by Merck and Co. TLC was conducted on pre-coated aluminium sheets ($60-254$) with a 0.2 mm thickness, manufactured by Merck and Co.

Light petroleum, referring to the fraction with b.p. $40-60^{\circ} \mathrm{C}$, and ethyl acetate were distilled prior to use. THF was distilled from sodium metal in the presence of benzophenone. Diethyl ether was distilled from lithium aluminium hydride. Methanol and ethanol were distilled from magnesium and iodine.

2-(2-Bromoallyloxy)benzaldehyde 1a.-A solution of 2,3-dibromoprop-1-ene ($9.82 \mathrm{~g}, 49.1 \mathrm{mmol}$) and 2-hydroxybenzaldehyde ($5.00 \mathrm{~g}, 40.9 \mathrm{mmol}$) in acetone ($20 \mathrm{~cm}^{3}$) was heated at reflux with anhydrous potassium carbonate $(11.32 \mathrm{~g}, 81.9$ mmol) for 4 h , after which it was diluted with water and extracted with diethyl ether. The organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Chromatography of the residue on silica gel with dichloromethane-light petroleum ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent gave the product 1 a as a clear colourless oil ($10.09 \mathrm{~g}, 79 \%$); R_{f} (dichloromethane-light petroleum, $3: 7, \mathrm{v} / \mathrm{v}) 0.24 ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3070-3015 \mathrm{w}$, $2990-2910 \mathrm{w}, 2860 \mathrm{w}, 1690 \mathrm{~s}, 1600 \mathrm{~s}, 1580 \mathrm{~m}, 1480 \mathrm{~s}$ and 1450 s ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 4.76\left(2 \mathrm{H}, \mathrm{t}, J_{1^{\prime}, 3^{\prime} \mathrm{E}}=J_{1^{\prime}, 3^{\prime} \mathrm{Z}} 1.1\right.$, $\left.1^{\prime}-\mathrm{H}\right), 5.74\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime}, 3^{\prime} E} 2.2,3^{\prime} \mathrm{Z}-\mathrm{H}\right), 6.10\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right), 6.87$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.5,3-\mathrm{H}\right), 7.02\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=J_{5,6} 7.6,5-\mathrm{H}\right), 7.42$ $\left(1 \mathrm{H}, \mathrm{dt}, J_{4,6} 1.8,4-\mathrm{H}\right), 7.73(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $10.59(1 \mathrm{H}, \mathrm{s}$, $\mathrm{HC}=\mathbf{0}$).

2-(2-Bromoallyloxy)phenyl Methyl Ketone 1b.-2-Hydroxyphenyl methyl ketone ($2.00 \mathrm{~g}, 14.69 \mathrm{mmol}$), 2,3-dibromoprop-1ene ($3.52 \mathrm{~g}, 17.63 \mathrm{mmol}$) and anhydrous potassium carbonate $(4.06 \mathrm{~g}, 29.38 \mathrm{mmol})$ were heated at reflux in anhydrous acetone ($20 \mathrm{~cm}^{3}$) for 5 h . Chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) afforded the ketone $1 \mathrm{lb}(2.32 \mathrm{~g}$, 62%) as needles, m.p. $45-46{ }^{\circ} \mathrm{C}$ [from light petroleum (b.p. 60$80^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 51.7 ; \mathrm{H}, 4.4 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires C , 51.79 ; $\mathrm{H}, 4.35 \%$); R_{f} (diethyl ether-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}$) 0.29 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3070w-3010w, 2990w-2910w, 2860w, 1670 s (CO), $1595 \mathrm{~s}, 1575 \mathrm{~m}, 1480 \mathrm{~s}, 1445 \mathrm{~s}, 1050 \mathrm{~s}$ and 895 s ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.66(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.73(2 \mathrm{H}, \mathrm{t}$, $\left.J_{1^{\prime}, 3^{\prime} E}=J_{1^{\prime}, 3^{\prime} Z} 1.1,1^{\prime}-\mathrm{H}\right), 5.72\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime} Z, 3^{\prime} E} 2.2,3^{\prime} \mathrm{Z}-\mathrm{H}\right), 6.02$ $\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 0.9\right.$ and $\left.J_{3,4} 8.4,3-\mathrm{H}\right), 7.02$ $\left(1 \mathrm{H}, \mathrm{td}, J_{5.4}=J_{5,6} 7.6,5-\mathrm{H}\right), 7.42\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,6} 1.8,4-\mathrm{H}\right)$ and 7.73 ($1 \mathrm{H} \mathrm{dd}, 6-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 32.0(\mathrm{Me})$, 72.2 (C-1'), 112.7 (C-3), 119.2 (C-3'), 121.4 (C-5), 126.4 (C-1), 128.6 (C-2'), 130.5 (C-6), 133.5 (C-4), 156.7 (C-2) and 119.3 ($\mathrm{C}=\mathrm{O}$); $m / z\left(\mathrm{CI}^{+}\right) 254 / 256\left(\mathrm{M}^{+}, 79 \%\right), 238 / 240(3), 175$ (100), 160 (3), 147 (6), 131 (8), 121 (34), 92 (8), 77 (8) (Found: MH^{+}, $255.0021 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires $M, 255.0021$).

2-(2-Bromoallyloxy)benzaldehyde O-Methyloxime 2a.-2-(2Bromoallyloxy)benzaldehyde $1 \mathrm{a}(2.00 \mathrm{~g}, 7.84 \mathrm{mmol})$ and O methylhydroxylamine hydrochloride $(0.98 \mathrm{~g}, 11.8 \mathrm{mmol})$ were stirred for 24 h at room temperature in pyridine $\left(20 \mathrm{~cm}^{3}\right)$. Pyridine was removed under reduced pressure and the residue diluted with diethyl ether and washed with water. The organic phase was dried and evaporated to dryness. Chromatography of the residue on silica gel with dichloromethane-light petroleum ($7: 3, \mathrm{v} / \mathrm{v}$) as the eluent afforded a mixture of E and Z isomers of the oxime ether $\mathbf{2 a}$ as a clear colourless oil $(2.11 \mathrm{~g}, 94 \%) ; R_{\mathrm{f}}$ (dichloromethane-light petroleum, 3:7, v/v) 0.38 and 0.23 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3080 \mathrm{w}, 3005 \mathrm{w}, 2960-2900 \mathrm{~m}, 2810 \mathrm{w}, 1645 \mathrm{~m}$ $(\mathrm{C}=\mathrm{N}), 1600 \mathrm{~m}, 1570 \mathrm{w}, 1480 \mathrm{~s}, 1260-1230 \mathrm{~s}, 1055 \mathrm{~s}$ and 920 s .

Major isomer (E): $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 3.97(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 4.66\left(2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} Z} 1.2\right.$ and $\left.J_{1^{\prime}, 4^{\prime} E} 1.6,1^{\prime}-\mathrm{H}\right), 5.68(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{3^{\prime} Z, 3^{\prime} E} 2.1,3^{\prime} Z-\mathrm{H}\right), 5.98\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right), 6.84\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 0.6\right.$ and $\left.J_{3,4} 8.3,3-\mathrm{H}\right), 6.99\left(1 \mathrm{H}\right.$, ddd, $J_{5,4} 7.5$ and $\left.J_{5,6} 7.8,5-\mathrm{H}\right), 7.31$ $\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4.6} 1.7,4-\mathrm{H}\right), 7.81(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $8.50(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{N}$); $\delta_{\mathrm{C}}\left(90.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 61.9$ (OMe), 72.0 (C-1'), 112.6 (C-3), 118.1 (C-3'), 121.3 (C-1), 121.7 (C-5), 128.6 (C-2'), 128.7 (C-4), $130.9(\mathrm{C}-6), 144.3(\mathrm{CH}=\mathrm{N})$ and $155.6(\mathrm{C}-2)$; $m / z\left(\mathrm{EI}^{+}\right) 269 / 271\left(\mathrm{M}^{+}, 29 \%\right), 240 / 242(38), 221 / 223(90), 190$ (72), 159 (100), 144 (39), 119 (80), 91 (90) and 77 (31) (Found: $\mathrm{M}^{+}, 269.0025 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ requires $M, 269.0051$).

2-(2-Bromoallyloxy)benzaldehyde O-Benzyloxime 2b.-2-(2Bromoallyloxy)benzaldehyde $1 \mathrm{a}(1.00 \mathrm{~g}, 4.15 \mathrm{mmol})$ and O benzylhydroxylamine hydrochloride ($0.79 \mathrm{~g}, 4.98 \mathrm{mmol}$) in pyridine ($20 \mathrm{~cm}^{3}$) were stirred at room temperature for 24 h . Work-up as for compound 2a followed by chromatography on silica gel with dichloromethane-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$; $3: 2, \mathrm{v} / \mathrm{v}$) as eluent gave a mixture of E and Z isomers of the oxime ether 2b ($1.16 \mathrm{~g}, 81 \%$) as a clear, colourless oil, R_{f} [dichloromethane-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$), $3: 7, \mathrm{v} / \mathrm{v}$] 0.33 and $0.15 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 3023 \mathrm{~m}, 2920 \mathrm{~m}, 2862 \mathrm{~m}$, $1634 \mathrm{~m}, 1598 \mathrm{~s}, 1570 \mathrm{w}, 1480 \mathrm{~s}, 1360 \mathrm{~s}, 1335 \mathrm{~m}$ and $1250-1220 \mathrm{~s} ; \mathrm{m} / \mathrm{z}$ (EI^{+}) $346 / 348\left(\mathrm{M}^{+}, 25 \%\right), 91$ (100) and 77 (10) (Found: M^{+}, 345.0364. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{2}$ requires $M, 345.0364$).

Major isomer $(E)\left(R_{\mathrm{f}} 0.33\right)$: $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $4.64\left(2 \mathrm{H}, \mathrm{t}, J_{1^{\prime}, 3^{\prime} \mathrm{E}}=J_{1^{\prime}, 3^{\prime} \mathrm{Z}} 1.2,1^{\prime}-\mathrm{H}\right), 5.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, $5.67\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime}, 3^{\prime} E} 3.4,3^{\prime} Z-\mathrm{H}\right), 5.97\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right), 6.83$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.4,3-\mathrm{H}\right), 6.98\left(1 \mathrm{H}, \mathrm{dd}, J_{5,4} 7.5\right.$ and $\left.J_{5.6} 7.8,5-\mathrm{H}\right)$, 7.25-7.38 $\left(4 \mathrm{H}\right.$, complex m, 4-H, and H_{m} and H_{p} in PhCH_{2}), $7.42\left(2 \mathrm{H}, \mathrm{dd}, J_{o, p} 1.6\right.$ and $J_{o, m} 7.7, \mathrm{H}_{o}$ in $\left.P h \mathrm{CH}_{2}\right), 7.82(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6,4} 1.7,6-\mathrm{H}\right)$ and $8.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}) ; \delta_{\mathrm{C}}\left(90.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 72.0\left(\mathrm{C}-1{ }^{\prime}\right), 76.4\left(\mathrm{PhCH}_{2}\right), 112.6(\mathrm{C}-3), 118.1\left(\mathrm{C}-3^{\prime}\right)$,
121.3 (C-1), 121.7 (C-5), 126.6 (C-2'), 126.8 (C-4), 127.6 (C_{p} in $\left.\mathrm{PhCH}_{2}\right), 128.4\left(\mathrm{C}_{m}\right.$ and C_{o} in PhCH_{2}), $131.0(\mathrm{C}-6), 137.6(\mathrm{C}-1$ in PhCH2 $), 144.8(\mathrm{CH}=\mathrm{N})$ and $155.6(\mathrm{C}-2)$.

Minor isomer $(Z)\left(R_{\mathrm{f}} 0.15\right): \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $4.58\left(2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} Z} 1.2\right.$ and $\left.J_{1^{\prime}, 3^{\prime} E} 1.6,1^{\prime}-\mathrm{H}\right), 5.20(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.63\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime} Z, 3^{\prime} E} 3.7,3^{\prime} \mathrm{Z}-\mathrm{H}\right), 5.93\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} \mathrm{E}-\mathrm{H}\right)$, $6.77\left(1 \mathrm{H}, \operatorname{dd}, J_{3,5} 0.6\right.$ and $\left.J_{3,4} 8.3,3-\mathrm{H}\right), 6.94\left(1 \mathrm{H}, \mathrm{td}, J_{5,4}=J_{5,6}\right.$ 7.6, $5-\mathrm{H}$), $7.22-7.42\left(6 \mathrm{H}\right.$, complex $\mathrm{m}, 4-\mathrm{H}$, and $\mathrm{H}_{o}, \mathrm{H}_{m}$ and H_{p} in $\left.P h \mathrm{CH}_{2}\right), 7.81\left(1 \mathrm{H}, \mathrm{dd}, J_{6,4} 1.7,6-\mathrm{H}\right)$ and $8.57(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3} ; 75.5 \mathrm{MHz} ; \mathrm{Me}_{4} \mathrm{Si}\right) 71.8\left(\mathrm{C}-1^{\prime}\right), 76.2\left(\mathrm{PhCH}_{2}\right)$, 112.5 (C-3), 118.1 (C-3'), 121.2 (C-1), 121.6 (C-5), 126.5 (C-2'), 126.6 (C-4), $127.8\left(\mathrm{C}_{p}\right.$ in $\left.\mathrm{Ph} \mathrm{CH}_{2}\right), 128.27\left(\mathrm{C}_{m}\right.$ in $\left.\mathrm{Ph} \mathrm{CH}_{2}\right)$, 128.31 (C_{o} in PhCH_{2}), 130.9 (C-6), 137.5 (C-1 in PhCH_{2}), 144.7 $(\mathrm{CH}=\mathrm{N})$ and $155.5(\mathrm{C}-2)$.

2-(2-Bromoallyloxy)benzaldehyde O-tert-Butyloxime 2c.-2-(2-Bromoallyloxy)benzaldehyde $1 \mathrm{a}(1.00 \mathrm{~g}, 4.15 \mathrm{mmol}$) was stirred with O-tert-butylhydroxylamine hydrochloride $(0.62 \mathrm{~g}$, 4.98 mmol) and pyridine ($20 \mathrm{~cm}^{3}$) for 24 h at room temperature. Work-up as for compound 2a followed by chromatography on silica gel with diethyl ether-light petroleum (b.p. $60-80^{\circ} \mathrm{C} ; 3: 7$, v / v) as eluent afforded a single isomer of the oxime ether 2 c as a clear colourless oil ($1.13 \mathrm{~g}, 3.16 \mathrm{mmol}, 87 \%$); R_{f} [diethyl etherlight petroleum (b.p. $60-80^{\circ} \mathrm{C}$), $\left.1: 4, \mathrm{v} / \mathrm{v}\right] 0.54 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3070w, 3018w, 2970-2900m, 2860w, 1640m (C=N), 1600m, 1570 w and $1480 \mathrm{~s}, 1260-1230 \mathrm{~s}, 1055 \mathrm{~s}$ and $920 \mathrm{~s} ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.29\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.58\left(2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} Z}\right.$ and $\left.J_{1^{\prime}, 3^{\prime} E}<1.0,1^{\prime}-\mathrm{H}\right), 5.60\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime}, 3^{\prime} E} 3.1,3^{\prime} \mathrm{Z}-\mathrm{H}\right), 5.91(1 \mathrm{H}, \mathrm{dt}$, $\left.3^{\prime} E-\mathrm{H}\right), 6.76\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.3,3-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{dd}, J_{5,4} 7.5\right.$ and $\left.J_{5,6} 7.7,5-\mathrm{H}\right), 7.21\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4,6} 1.6,4-\mathrm{H}\right), 7.79(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H=\mathrm{NOMe}) ; ~ \delta_{\mathrm{C}}\left(90.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $27.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 72.0\left(\mathrm{C}-1^{\prime}\right), 79.0\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 112.6(\mathrm{C}-3),}\right.$ 118.0 (C-3'), 121.6 (C-5), 122.3 (C-1), 128.5 (C-4), 128.7 (C-2'), $130.4(\mathrm{C}-6), 142.7\left(\mathrm{CH}=\mathrm{NOBu}^{+}\right)$and $155.4(\mathrm{C}-2) ; m / z\left(\mathrm{EI}^{+}\right)$ $311 / 313$ ($\mathrm{M}^{+}, 3 \%$), 255/257 (3), 238/240 (10), 176 (13), 159 (5), 131 (3), 119 (5), 91 (10), 77 (5), 57 (100) and 41 (20) (Found: $\mathrm{MH}^{+}, 312.0599 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrNO}_{2}$ requires $M, 312.0599$).

2-(2-Bromoallyloxy)phenyl Methyl Ketone O-Methyloxime 2d.-2-(2-Bromoallyloxy)phenyl methyl ketone 1 b ($2.00 \mathrm{~g}, 7.84$ $\mathrm{mmol})$ and O-methylhydroxylamine hydrochloride $(0.79 \mathrm{~g}, 9.41$ mmol) were stirred for 24 h at room temperature in pyridine ($20 \mathrm{~cm}^{3}$). Work-up as for compound 2a followed by chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as the eluent yielded a 6:1 ratio of E to Z isomers of the oxime ether $\mathbf{2 d}$ as a clear colourless oil ($2.05 \mathrm{~g}, 92 \%$); R_{f} (diethyl etherlight petroleum, $3: 10, \mathrm{v} / \mathrm{v}$) 0.43 ; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3065 \mathrm{~m}, 3020 \mathrm{w}$, 2960-2910m, 2860w, 1645w (C=N), 1600s, 1575w, 1485s, 1440s, $1230 \mathrm{~s}, 1040 \mathrm{~s}, 885 \mathrm{~s}$ and $750 \mathrm{~s} ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}^{+}\right) 284 / 286\left(\mathrm{M}^{+}, 100 \%\right.$), 204 (4) and 174 (10); $m / z\left(\mathrm{EI}^{+}\right)$239/241 (4\%), 204 (4), 172 (10), 133 (4), 119 (4), 105 (8), 91 (100), 77 (8) and 39 (73) (Found: MH^{+}, 284.0286. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNO}_{2}$ requires M, 286.0286).
Major isomer (E): $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.20(3 \mathrm{H}, \mathrm{s}$, Me), 3.93 ($3 \mathrm{H}, \mathrm{s}$, OMe), 4.55 ($2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} Z}$ and $J_{1^{\prime}, 3^{\prime} E}<1.0,1^{\prime}-$ H), $5.60\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime} Z .3^{\prime} E} 1.9,3^{\prime} Z-\mathrm{H}\right), 5.91\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right), 6.76$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 0.7\right.$ and $\left.J_{3,4} 8.1,3-\mathrm{H}\right), 6.92\left(1 \mathrm{H}\right.$, ddd, $J_{5,6} 7.5$ and $\left.J_{5,4} 7.7,5-\mathrm{H}\right), 7.22\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4,6} 1.7,4-\mathrm{H}\right)$ and $7.31(1 \mathrm{H}, \mathrm{dd}, 6-$ H); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 16.1$ (Me), 61.5 (OMe), 71.8 (C-1'), 112.3 (C-3), 118.0 (C-3'), 121.4 (C-5), 126.7 (C-1), 127.3 (C-2'), $129.8(\mathrm{C}-4), 130.0(\mathrm{C}-6), 155.3(\mathrm{C}=\mathrm{N})$ and $155.6(\mathrm{C}-2)$.

Minor isomer (Z): $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.17(3 \mathrm{H}$, s, Me), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.55 ($2 \mathrm{H}, \mathrm{dd}, 1^{\prime}$-H masked by E isomer), $5.60\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime} Z-\mathrm{H}\right.$ masked by E isomer), $5.98(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{3^{\prime} E, 1^{\prime}}<1.0, J_{3^{\prime}, 3^{\prime} E} 1.9,3^{\prime} E-\mathrm{H}\right)$ and $6.80-7.35(4 \mathrm{H}$, complex m, $3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}$ masked by E isomer); $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 21.4(\mathrm{Me}), 61.4(\mathrm{OMe}), 71.6\left(\mathrm{C}-1^{\prime}\right), 112.5(\mathrm{C}-3)$, 117.5 (C-3'), 121.3 (C-5), 125.4 (C-1), 126.6 (C-2'), 128.3 (C-4), 129.6 (C-6), 152.8 (C=N) and 153.4 (C-2).

2-(2-Bromoallyloxy)phenyl Methyl Ketone O-Benzyloxime 2e.-2-(2-Bromoallyloxy)phenyl methyl ketone $\mathbf{1 b}$ ($2.00 \mathrm{~g}, 7.84$ mmol) and O-benzylhydroxylamine hydrochloride $(1.50 \mathrm{~g}, 9.40$ mmol) were stirred at room temperature in pyridine $\left(20 \mathrm{~cm}^{3}\right)$ for 24 h . Work-up as for compound 2a followed by chromatography on silica gel with dichloromethane-light petroleum ($3: 2 \mathrm{v} / \mathrm{v}$) as the eluent gave a $7: 1$ mixture of E to Z isomers of the oxime ether $2 \mathrm{e}(2.10 \mathrm{~g}, 5.83 \mathrm{mmol}, 74 \%)$ as needles, m.p. $53-53.5^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 60.0; $\mathrm{H}, 5.1 ; \mathrm{N}, 4.0 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 60.01 ; \mathrm{H}, 5.04 ; \mathrm{N}$, 3.89%); R_{f} (diethyl ether-light petroleum, $3: 7, \mathrm{v} / \mathrm{v}$) 0.47 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3060 \mathrm{~m}, 3013 \mathrm{~m}, 2980-2905 \mathrm{~s}, 2860 \mathrm{~s}, 1640-$ $1630 \mathrm{w}(\mathrm{C}=\mathrm{N}), 1595 \mathrm{~s}, 1575 \mathrm{w}, 1482 \mathrm{~s}$ and 1440 s .

Major isomer (E): $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.27(3 \mathrm{H}$, s , Me), $4.58\left(2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} \mathrm{Z}} 1.2\right.$ and $\left.J_{1^{\prime}, 3^{\prime} E} 1.6,1^{\prime}-\mathrm{H}\right), 5.22(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{PhCH}_{2}\right), 5.62\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime} Z, 3^{\prime} E} 2.1,3^{\prime} Z-\mathrm{H}\right), 5.92\left(1 \mathrm{H}, \mathrm{dt}, 3^{\prime} E-\mathrm{H}\right)$, $6.79\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 1.0\right.$ and $\left.J_{3,4} 7.8,3-\mathrm{H}\right), 6.94\left(1 \mathrm{H}, \mathrm{td}, J_{5,4}=J_{5,6}\right.$ 7.5, 5-H) and 7.22-7.41 (7 H , complex m, 4-H, 6-H, and $\mathrm{H}_{o}, \mathrm{H}_{m}$ and H_{p} in PhCH_{2}); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 16.5(\mathrm{Me})$, $71.9\left(\mathrm{C}-1{ }^{\prime}\right), 75.8\left(\mathrm{PhCH}_{2}\right), 112.5(\mathrm{C}-3), 117.9\left(\mathrm{C}-3^{\prime}\right), 121.5(\mathrm{C}-5)$, $126.6(\mathrm{C}-1), 127.4\left(\mathrm{C}-2^{\prime}\right), 127.5\left(\mathrm{C}_{p}\right.$ in $\left.\mathrm{PhCH}_{2}\right), 127.8\left(\mathrm{C}_{o}\right.$ or C_{m} in PhCH_{2}), 128.2 (C_{o} or C_{m} in PhCH_{2}), 129.8 (C-4), 130.0 (C-6), $138.1\left(\mathrm{C}-1\right.$ in $\left.\mathrm{PhCH}_{2}\right), 155.4(\mathrm{C}=\mathrm{N})$ and $156.4(\mathrm{C}-2) ; m / z\left(\mathrm{Cl}^{+}\right)$ 360/362 ($\mathrm{M}^{+}, 100 \%$), $280(4), 224(10), 174$ (10), 159 (10) and 91 (16) (Found: $\mathrm{MH}^{+}, 360.0599 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Br}$ requires M, 360.0599).

Minor isomer (Z): $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.16(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 4.57\left(2 \mathrm{H}, \mathrm{dd}, J_{1^{\prime}, 3^{\prime} \mathrm{Z}} 1.4\right.$ and $\left.J_{1^{\prime}, 3^{\prime} E} 1.6,1^{\prime}-\mathrm{H}\right), 5.05(2 \mathrm{H}, \mathrm{s}$, PhCH_{2}), $5.57\left(1 \mathrm{H}, \mathrm{dt}, J_{3^{\prime}, 3^{\prime} E} 2.1,3^{\prime} Z-\mathrm{H}\right), 5.90\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime} E-\mathrm{H}\right.$ masked by E isomer) and 6.75-7.50 (complex m, masked by E isomer); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ;\right.$ TMS) 21.5 (Me), 71.6 ($\left.\mathrm{C}-1^{\prime}\right)$, $75.3\left(\mathrm{PhCH}_{2}\right), 112.5(\mathrm{C}-3), 117.5\left(\mathrm{C}-3{ }^{\prime}\right), 121.3(\mathrm{C}-5), 126.6(\mathrm{C}-1)$, 127.27 (C_{p} in $\mathrm{PhCH} \mathrm{C}_{2}$ or $\mathrm{C}-\mathbf{2}^{\prime}$), 127.34 ($\mathrm{C}-2^{\prime}$ or C_{p} in $\mathrm{Ph}_{\mathrm{CH}}^{2}$), $128.1\left(\mathrm{C}_{o}\right.$ or C_{m} in PhCH_{2}), $128.3\left(\mathrm{C}_{m}\right.$ or C_{o} in $\left.\mathrm{PhCH}_{2}\right), 129.5$ (C-4) and 130.0 (C-6); peaks due to $\mathrm{C}-2, \mathrm{C}=\mathrm{N}$ and C^{\prime} were too small to be assigned.

4-Methoxyamino-3-methylidenechromane 3a.-Method A for radical cyclisation. A solution of 2-(2-bromoallyloxy) benzaldehyde O-methyloxime $2 \mathrm{a}(2.00 \mathrm{~g}, 7.37 \mathrm{mmol})$ and tributyltin hydride ($2.59 \mathrm{~g}, 8.90 \mathrm{mmol}$) in benzene ($370 \mathrm{~cm}^{3}, 0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ 2a) was degassed by bubbling nitrogen through the solution for 1 h . The reaction mixture was heated at reflux under a nitrogen atmosphere and a solution of AIBN ($240 \mathrm{mg}, 1.46 \mathrm{mmol}$) in degassed benzene ($10 \mathrm{~cm}^{3}$) was added over 18 h via a syringe pump. Heating was continued for 24 h and benzene evaporated under reduced pressure. Chromatography of the residue on silica gel with diethyl ether-light petroleum ($1: 4, \mathrm{v} / \mathrm{v}$) as the eluent yielded the title compound 3a as a pale yellow oil (1.07 g , 76%); R_{f} [diethyl ether-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$), 1:9, $\mathrm{v} / \mathrm{v}] 0.27 ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{Si}\right) 3.50(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.43(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 11.8,2-\mathrm{H}_{\mathrm{ax}}\right), 4.84(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2 \mathrm{eq}, \mathrm{Z}} 1.2,2-\mathrm{H}_{\mathrm{eq}}\right), 5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E), 5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-\mathrm{Z}), 5.57(1 \mathrm{H}$, $\mathrm{brs}, \mathrm{NH}), 6.83\left(1 \mathrm{H}, \mathrm{dd}, J_{8.6} 0.6\right.$ and $\left.J_{8,7} 7.5,8-\mathrm{H}\right), 6.89(1 \mathrm{H}, \mathrm{td}$, $\left.J_{6,5}=J_{6,7} 7.5,6-\mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{td}, J_{7,5} 1.6,7-\mathrm{H}\right)$ and $7.22(1 \mathrm{H}$, dd, $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(90.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 60.3$ (C-4), 62.8 (OMe), $67.4(\mathrm{C}-2), 115.9\left(\mathrm{C}=\mathrm{CH}_{2}\right), 117.0(\mathrm{C}-8), 120.1(\mathrm{C}-4 \mathrm{a})$, 120.7 (C-6), 129.5 (C-7), 130.11 (C-5), 139.4 (C-3) and 155.2 (C-8a).

Anhydrous hydrogen chloride gas was passed through a solution of the hydroxylamine $\mathbf{3 a}$ in anhydrous diethyl ether to give the hydrochloride salt as a powder ($1.05 \mathrm{~g}, 82 \%$), m.p. $131-$ $134^{\circ} \mathrm{C}$ (from chloroform-methanol) (Found: C, 56.9; H, 6.2; N, 5.7. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.90 ; \mathrm{H}, 6.29 ; \mathrm{N}, 6.03 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3940 \mathrm{w}, 3045 \mathrm{~s}$, $2980 \mathrm{~m}, 2690 \mathrm{w}, 2300 \mathrm{~m}$, $1650 \mathrm{~m}, 1580 \mathrm{~m}, 1570 \mathrm{~m}, 1040 \mathrm{w}$ and $895 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.60\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.8,2-\mathrm{H}_{\mathrm{ax}}\right), 4.76$ ($1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$), 5.11 ($1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{eq} . \mathrm{E}} 1.1,2-\mathrm{H}_{\mathrm{eq}}$), $5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E)$,
$5.66(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-\mathrm{Z}), 6.87\left(1 \mathrm{H}, \mathrm{dd}, J_{8.6} 1.1\right.$ and $\left.J_{8.7} 8.3,8-\mathrm{H}\right), 6.95$ $\left(1 \mathrm{H}\right.$, ddd, $J_{6,5} 7.7$ and $\left.J_{6,7} 8.6,6-\mathrm{H}\right), 7.23\left(1 \mathrm{H}\right.$, ddd, $J_{7,5} 1.4$, 7-H), $7.77(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H})$ and $12.01\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{c}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 58.8$ (C-4), 62.7 (OMe), 67.6 (C-2), 112.2 (C-4a), $117.6(\mathrm{C}-8), 120.9(\mathrm{C}-6), 123.4\left(\mathrm{C}=\mathrm{CH}_{2}\right), 131.5(\mathrm{C}-7)$, 131.71 (C-3), 132.0 (C-5) and 155.9 (C-8a); $m / z\left(\mathrm{EI}^{+}\right) 160(2 \%)$, 145 (100), 115 (20), 91 (8) and 77 (2) (Found: $\mathrm{M}^{+}-\mathrm{Cl}$, 192.1025. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}_{2}$ requires $M, 192.1025$).

4-Benzyloxyamino-3-methylidenechromane 3b.-Following method A, 2-(2-bromoallyloxy)benzaldehyde O-benzyloxime 2b ($300 \mathrm{mg}, 0.87 \mathrm{mmol}$) was treated with tributyltin hydride (303 $\mathrm{mg}, 1.04 \mathrm{mmol})$. Chromatography on silica gel with diethyl ether-light petroleum ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent afforded the hydroxylamine 3 b as a pale yellow oil ($176 \mathrm{mg}, 0.66 \mathrm{mmol}, 76 \%$); R_{f} (diethyl ether-light petroleum, $\left.1: 4, \mathrm{v} / \mathrm{v}\right) 0.39 ; v_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1} 3080 \mathrm{w}, 3005 \mathrm{w}, 2960-2900 \mathrm{~m}, 2805 \mathrm{w}, 1640 \mathrm{~m}, 1610 \mathrm{~m}$, $1570 \mathrm{w}, 1485 \mathrm{~s}$ and $1240 \mathrm{~s} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 4.43$ $\left(1 \mathrm{H}, \mathrm{d}, J_{4, \mathrm{NH}} 4.8,4-\mathrm{H}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 11.7,2-\mathrm{H}_{\mathrm{ax}}\right), 4.65$ and $\left.4.72(2 \mathrm{H}, \mathrm{AB} \text { quartet, } J 11.7, \mathrm{PhCH})_{2}\right), 4.78\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \text { eq, }}\right.$ $\left.1.2,2-\mathrm{H}_{\mathrm{eq}}\right), 5.28(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E), 5.35(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-\mathrm{Z}), 5.54(1 \mathrm{H}, \mathrm{d}$, NH), $6.83\left(1 \mathrm{H}, \mathrm{dd}, J_{8,6} 1.1\right.$ and $\left.J_{8,7} 8.1,8-\mathrm{H}\right), 6.87(1 \mathrm{H}, \mathrm{td}$, $\left.J_{6,5}=J_{6,7} 7.4,6-\mathrm{H}\right), 7.15\left(1 \mathrm{H}, \mathrm{dd}, J_{5,7} 1.7,5-\mathrm{H}\right), 7.18(1 \mathrm{H}$, ddd, 7-H) and 7.25-7.34 (5 H , complex m, $\mathrm{H}_{o}, \mathrm{H}_{m}$ and H_{p} in $\left.\mathrm{PhCH}_{2}\right) ; \delta_{\mathrm{C}}\left(90.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 60.4(\mathrm{C}-4), 67.4(\mathrm{C}-2)$, $77.1\left(\mathrm{PhCH}_{2}\right), 116.0\left(\mathrm{C}=\mathrm{CH}_{2}\right), 117.0(\mathrm{C}-8), 120.1(\mathrm{C}-4 \mathrm{a}), 120.6$ (C-6), $\left.127.9\left(\mathrm{C}_{p} \text { in } \mathrm{PhCH}\right)_{2}\right), 128.3\left(\mathrm{C}_{m}\right.$ in $\left.\mathrm{PhCH}_{2}\right), 128.8\left(\mathrm{C}_{o}\right.$ in $\mathrm{Ph} \mathrm{CH}_{2}$), 129.5 (C-7), 130.2 (C-5), 137.7 (C-1 in $\mathrm{Ph} \mathrm{CH}_{2}$), 139.5 (C-3) and 155.3 (C-8a).

The hydrochloride salt of the hydroxylamine $\mathbf{3 b}$, prepared as for compound 2a, was obtained as a hygroscopic powder (164 $\mathrm{mg}, 0.54 \mathrm{mmol}, 82 \%) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 4.58(1 \mathrm{H}$, $\left.\mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.7,2-\mathrm{H}_{\mathrm{ax}}\right), 4.80(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.04(1 \mathrm{H}, \mathrm{d}, J 9.1$, $\left.\mathrm{PhCH}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{d}, \mathrm{PhCH} 2), 5.17\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}_{\mathrm{eq}}\right), 5.58(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-E), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-Z), 6.81\left(1 \mathrm{H}, \mathrm{dd}, J_{8,6} 1.0\right.$ and $\left.J_{8,7} 8.3,8-\mathrm{H}\right)$, $6.87\left(1 \mathrm{H}\right.$, ddd, $J_{6,5} 7.2$ and $\left.J_{6,7} 7.5,6-\mathrm{H}\right), 7.06\left(1 \mathrm{H}\right.$, ddd, $J_{7,5} 1.4$, 7-H), 7.24-7.40 (5 H , complex m, $\mathrm{H}_{o}, \mathrm{H}_{m}$ and H_{p} in PhCH_{2}) and $7.78(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 59.2(\mathrm{C}-4)$, $67.5(\mathrm{C}-2), 77.0\left(\mathrm{PhCH}_{2}\right), 112.3(\mathrm{C}-4 \mathrm{a}), 117.5(\mathrm{C}-8), 120.9(\mathrm{C}-6)$, $123.3\left(\mathrm{C}=\mathrm{CH}_{2}\right), 128.5\left(\mathrm{C}_{m}\right.$ in $\left.\mathrm{PhCH} \mathrm{CH}_{2}\right), 129.2\left(\mathrm{C}_{\mathrm{p}}\right.$ in $\left.\mathrm{Ph} \mathrm{CH}_{2}\right)$, 129.6 (C_{0} in PhCH_{2}), 131.6 (C-7), 131.9 (C-1 in PhCH_{2}), 132.0 (C-5), 132.8 (C-3) and $155.8(\mathrm{C}-8 \mathrm{a}) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}^{+}\right) 268(\mathrm{M}-\mathrm{Cl}$, 8%), 160 (12), 145 (100), 131 (2), 115 (6), 91 (21) and 77 (2) (Found: $\mathrm{M}^{+}-\mathrm{Cl}, 268.1337 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}_{2}$ requires M, 268.1337).

4-tert-Butoxyamino-3-methylidenechromane 3c.-Following method A, 2-(2-bromoallyloxy)benzaldehyde O-tert-butyloxime $2 \mathrm{c}(400 \mathrm{mg}, 1.28 \mathrm{mmol})$ was treated with tributyltin hydride ($450 \mathrm{mg}, 1.54 \mathrm{mmol}$). Chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) gave the hydroxylamine 3c as a pale yellow oil ($242 \mathrm{mg}, 1.04 \mathrm{mmol}, 81 \%$); R_{f} (diethyl ether-light petroleum, $\left.1: 4, \mathrm{v} / \mathrm{v}\right) 0.43 ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.07\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.25(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 4.41$ $\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 11.7,2-\mathrm{H}_{\mathrm{ax}}\right), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \mathrm{eq}, Z} 1.2,2-\mathrm{H}_{\mathrm{eq}}\right), 4.85$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $5.19(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E), 5.23(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-\mathrm{Z}), 6.75(1 \mathrm{H}$, $\mathrm{dd}, J_{8,6} 1.0$ and $\left.J_{8,7} 8.9,8-\mathrm{H}\right), 6.82\left(1 \mathrm{H}, \mathrm{td}, J_{6,5}=J_{6,7} 7.6\right.$, $6-\mathrm{H})$, $7.10\left(1 \mathrm{H}, \mathrm{ddd}, J_{7,5} 1.5,7-\mathrm{H}\right)$ and $7.21(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H})$.

The hydrochloride salt of 3c, prepared as for the hydroxylamine was obtained as a powder ($238 \mathrm{mg}, 0.88 \mathrm{mmol}$, 85%), m.p. $129-131^{\circ} \mathrm{C}$ (from ethyl acetate-light petroleum) (Found: $\mathrm{C}, 61.3 ; \mathrm{H}, 7.75 ; \mathrm{N}, 5.15 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO}_{2} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 61.31 ; \mathrm{H}, 7.45 ; \mathrm{N}, 5.11 \%) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3940 \mathrm{w}, 3045 \mathrm{~s}, 2980-2860 \mathrm{~s}, 2690 \mathrm{w}, 2300 \mathrm{~m}, 1720 \mathrm{w}, 1605 \mathrm{~m}$, $1580 \mathrm{~m}, 1570 \mathrm{~m}, 1040 \mathrm{~m}$ and $895 \mathrm{~m} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.37\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.62\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.4,2-\mathrm{H}_{\mathrm{ax}}\right), 4.97$ $\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}_{\mathrm{eq}}\right), 5.05(1 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E), 5.95(1 \mathrm{H}$, s, H-Z $), 6.88\left(\mathrm{~d}, J_{8,7} 8.2,8-\mathrm{H}\right), 6.99\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7} 7.2\right.$ and $J_{6,5}$
$7.7,6-\mathrm{H}), 7.24(\mathrm{dd}, 1 \mathrm{H}, 7-\mathrm{H}), 8.17(\mathrm{~d}, 1 \mathrm{H}, 5-\mathrm{H})$ and $11.69(\mathrm{br} \mathrm{s}$, $\left.2 \mathrm{H}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}\left(63.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 27.0\left(\mathrm{Me}_{3} \mathrm{C}\right), 58.2(\mathrm{C}-$ 4), $69.2(\mathrm{C}-2), 84.5\left(\mathrm{Me}_{3} \mathrm{C}\right), 113.6(\mathrm{C}-4 \mathrm{a}), 117.3\left(\mathrm{C}=\mathrm{CH}_{2}\right), 121.3$ (C-8), $123.8(\mathrm{C}-6), 131.3(\mathrm{C}-7), 131.9(\mathrm{C}-5), 132.8(\mathrm{C}-3)$ and 156.4 (C-8a); $m / z 177$ (5\%), 160 (5), 145 (100), 115 (15), 91 (5) and 77 (2) (Found: $\mathrm{M}^{+}-\mathrm{Cl}$, 234.1494. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ requires $M, 234.1494$).

4-Methoxyamino-4-methyl-3-methylidenechromane 3d.Method B for radical cyclisation. A degassed solution of 2-(2bromoallyloxy)phenyl methyl ketone O-methyloxime 2d (265 $\mathrm{mg}, 0.93 \mathrm{mmol})$, tributyltin hydride $(330 \mathrm{mg}, 1.12 \mathrm{mmol})$ and AIBN ($150 \mathrm{mg}, 1.93 \mathrm{mmol}$) in benzene ($47 \mathrm{~cm}^{3}, 0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ 2d) was heated at reflux under a nitrogen atmosphere for 3 h , after which the mixture was evaporated under reduced pressure. Chromatography of the residue on silica gel with diethyl etherlight petroleum ($1: 4 \mathrm{v} / \mathrm{v}$) gave the hydroxylamine $3 \mathbf{3}$ as a pale yellow oil ($135 \mathrm{mg}, 71 \%$).

The hydrochloride salt of 3d, prepared as for the hydroxylamine 3a, was obtained as a powder ($137 \mathrm{mg}, 86 \%$), m.p. $120-123^{\circ} \mathrm{C}$ (ethyl acetate-light petroleum) (Found: C , 58.2; $\mathrm{H}, 6.9 ; \mathrm{N}, 5.6 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{2} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 58.53 ; \mathrm{H}$, $6.76 ; \mathrm{N}, 5.69 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3940 \mathrm{w}, 3045 \mathrm{~s}, 2980-2860 \mathrm{~s}$, $2690 \mathrm{w}, 2300 \mathrm{~m}, 1710 \mathrm{w}, 1605 \mathrm{w}, 1580 \mathrm{~m}, 1560 \mathrm{~m}, 1320-1300 \mathrm{~s}$, 1040w and $895 \mathrm{~s} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.98(3 \mathrm{H}, \mathrm{s}$, Me), 3.99 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.58\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.6,2-\mathrm{H}_{\mathrm{ax}}\right), 4.87$ $\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}_{\mathrm{eq}}\right), 5.66(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-E), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-Z), 6.90(1 \mathrm{H}$, dd, $J_{8,6} 0.7$ and $\left.J_{8,7} 7.7,8-H\right), 7.05\left(1 \mathrm{H}\right.$, ddd, $J_{6,7} 7.0$ and $J_{6,5}$ $7.8,6-\mathrm{H}), 7.25\left(1 \mathrm{H}\right.$, ddd, $\left.J_{7,5} 1.1,7-\mathrm{H}\right), 8.09(1 \mathrm{H}, \mathrm{dd}, 5-\mathrm{H})$ and $12.47\left(2 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{C}}\left(63.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 23.61 (Me), 62.67 (C-4), 63.11 (OMe), 69.55 (C-2), 117.93 $\left(\mathrm{C}=\mathrm{CH}_{2}\right), 119.35(\mathrm{C}-4 \mathrm{a}), 119.92(\mathrm{C}-8), 122.00(\mathrm{C}-6), 128.71$ (C-7), $130.84(\mathrm{C}-5), 137.84(\mathrm{C}-3)$ and $155.95(\mathrm{C}-8 \mathrm{a}) ; m / z\left(\mathrm{EI}^{+}\right)$ $159(100 \%), 144$ (15), 131 (14), 115 (12), 91 (8) and 77 (20) (Found: $\mathrm{M}^{+}-\mathrm{Cl}, 206.1181 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO}_{2}$ requires M, 206.1181).

4-Benzyloxyamino-4-methyl-3-methylidenechromane 3e.Following method B, 2-(2-bromoallyloxy)phenyl methyl ketone O-benzyloxime $2 \mathrm{e}(660 \mathrm{mg}, 1.9 \mathrm{mmol})$ was treated with tributyltin hydride ($660 \mathrm{mg}, 2.3 \mathrm{mmol}$) and AIBN ($310 \mathrm{mg}, 1.9$ mmol). Chromatography on silica gel with diethyl ether-light petroleum ($1: 4, \mathrm{v} / \mathrm{v}$) gave the title compound 3 e as a pale yellow oil ($360 \mathrm{mg}, 71 \%$); R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) 0.38 .

The hydrochloride salt of $\mathbf{3 e}$, prepared as for $\mathbf{3 a}$, was obtained as a hygroscopic powder ($335 \mathrm{mg}, 86 \%$); $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ $3045 \mathrm{~s}, 2990 \mathrm{~s}, 2690 \mathrm{~m}, 2300 \mathrm{~m}, 1710 \mathrm{br}, 1605-1570 \mathrm{w}, 1480-1420 \mathrm{~m}$, 1260 s and $895 \mathrm{~m} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.97(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{ax}, 2 \mathrm{eq}} 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}_{\mathrm{eq}}\right), 5.07$ ($\left.1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{PhCH} \mathrm{O}_{2} \mathrm{O}\right), 5.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{PhCH}_{2} \mathrm{O}\right), 5.60(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-E), 5.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-Z), 6.69\left(1 \mathrm{H}, \mathrm{d}, J_{8,7} 7.3,8-\mathrm{H}\right), 7.06(1 \mathrm{H}$, dd, $J_{6,5} 7.0$ and $\left.J_{6,7} 7.2,6-H\right), 7.20-7.30(6 \mathrm{H}$, complex m, 7-H, and $\mathrm{H}_{o}, \mathrm{H}_{m}, \mathrm{H}_{p}$ in $\left.P h \mathrm{CH}_{2}\right), 8.05(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H})$ and $12.30(2 \mathrm{H}$, br $\left.\mathrm{s}, \mathrm{NH}_{2}\right) ; \delta_{\mathrm{c}}\left(63.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.6\left(\mathrm{CH}_{3}\right), 61.7(\mathrm{C}-4)$, $69.9(\mathrm{C}-2), 76.8\left(\mathrm{PhCH}_{2}\right), 117.6(\mathrm{C}-8), 119.5(\mathrm{C}-4 \mathrm{a}), 121.6(\mathrm{C}-6)$, 128.5-130.6 (C-3, C-5, C-7, $\mathrm{R}_{2} \mathrm{C}=\mathrm{CH}_{2}$, and $\mathrm{C}-1, \mathrm{C}_{o}, \mathrm{C}_{m}$ and C_{p} in PhCH_{2}) and $155.7(\mathrm{C}-8 \mathrm{a}) ; m / z\left(\mathrm{EI}^{+}\right) 174(\mathrm{M}-\mathrm{HCl}$ and $\mathrm{PhCH}_{2} \mathrm{OH}, 4 \%$), 159 (100), 144 (6), 131 (7), 115 (6), 91 (29) and 77 (6) (Found: $\mathrm{M}^{+}-\mathrm{Cl}, 282.1494 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ requires M, 282.1494).

2-(Prop-2-ynyloxy)benzaldehyde 4.-A solution of 3-bromopropyne ($1.17 \mathrm{~g}, 9.84 \mathrm{mmol}, 80 \mathrm{wt} \%$ in toluene) and 2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 8.20 \mathrm{mmol}$) in acetone ($20 \mathrm{~cm}^{3}$) was heated at reflux with anhydrous potassium carbonate $(2.26 \mathrm{~g}$, 1.64 mmol) for 5 h after which it was diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether. The organic extracts were
dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. Chromatography of the residue on silica gel with dichloro-methane-light petroleum ($1: 1 \mathrm{v} / \mathrm{v}$) as eluent gave the product 4 as rhombic crystals ($1,11 \mathrm{~g}, 85 \%$), m.p. $68^{\circ} \mathrm{C}$ [light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 74.8 ; \mathrm{H}, 4.8 . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.99 ; \mathrm{H}, 5.03 \%$); R_{f} (dichloromethane-light petroleum, $1: 1 \mathrm{v} / \mathrm{v}) 0.30 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300 \mathrm{~s}, 3070-3015 \mathrm{w}, 2915 \mathrm{w}$, $2870 \mathrm{~m}, 1685 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1600 \mathrm{~s}, 1580 \mathrm{~m}, 1480 \mathrm{~s}$ and $1450 \mathrm{~s} ; \delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.58\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 2^{\prime}} 2.3,3^{\prime}-\mathrm{H}\right), 4.83$ ($2 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}$), $7.07\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 1.7\right.$ and $\left.J_{3,4} 7.0,3-\mathrm{H}\right), 7.12$ $\left(1 \mathrm{H}\right.$, ddd, $J_{5,6} 7.7$ and $\left.J_{5,4} 9.0,5-\mathrm{H}\right), 7.56\left(1 \mathrm{H}\right.$, ddd, $J_{4,6} 1.8$, $4-\mathrm{H}), 7.85(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $10.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}(90.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 56.4$ (C-1'), 76.5 (C-3'), 77.7 (C-2'), 113.2 (C-3), 121.7 (C-5), 125.5 (C-1), 128.5 (C-6), 135.7 (C-4), $159.7(\mathrm{C}-2)$ and $189.4(\mathrm{CHO}) ; m / z\left(\mathrm{CI}^{+}\right) 178\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$, 10%), $161\left(\mathrm{MH}^{+}, 100\right) 132$ (3), 58 (3), 44 (7) and 36 (11) [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, \quad 178.0868 . \quad \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$ requires M, 178.0868].

2-(Prop-2-ynyloxy)benzaldehyde O-Methyloxime 5a.-2-(Prop-2-ynyloxy)benzaldehyde $4(270 \mathrm{mg}, 1.69 \mathrm{mmol}), O$ methylhydroxylamine hydrochloride ($225 \mathrm{mg}, 2.70 \mathrm{mmol}$) and pyridine ($293 \mathrm{mg}, 3.71 \mathrm{mmol}$) were stirred in methanol ($5 \mathrm{~cm}^{3}$) at room temperature for 4 h . Methanol was evaporated under reduced pressure and the residue dissolved in diethyl ether and the solution was washed with water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue on silica gel with dichloro-methane-light petroleum ($1: 1, \mathrm{v} / \mathrm{v}$) afforded the title compound 5 a ($173 \mathrm{mg}, 54 \%$) as prisms, m.p. $47-48^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 69.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 7.25 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.82 ; \mathrm{H}, 5.86 ; \mathrm{N}, 7.40 \%$); R_{f} (dichloromethane-light petroleum, $7: 3, \mathrm{v} / \mathrm{v}) 0.63 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3300 \mathrm{~s}, 2940 \mathrm{~s}$, $2900 \mathrm{w}, 2860 \mathrm{w}, 1600 \mathrm{~m}, 1570 \mathrm{~m}, 1480 \mathrm{~s}$ and $1450 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.50\left(1 \mathrm{H}, \mathrm{t}, J_{3^{\prime}, 1^{\prime}} 2.4,3^{\prime}-\mathrm{H}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.68\left(2 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J_{3,5} 1.1\right.$ and $\left.J_{3,4} 8.4,3-\mathrm{H}\right), 6.98$ $\left(1 \mathrm{H}\right.$, ddd, $J_{5,6} 8.0$ and $\left.J_{5,4} 7.4,5-\mathrm{H}\right), 7.31\left(1 \mathrm{H}, \mathrm{ddd}, J_{4,6} 1.7,4-\right.$ $\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $8.45(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 56.3\left(\mathrm{C}-1^{\prime}\right), 61.9\left(\mathrm{OCH}_{3}\right), 75.9\left(\mathrm{C}-2^{\prime}\right), 78.2(\mathrm{C}-$ $\left.3^{\prime}\right), 112.8(\mathrm{C}-3), 121.5(\mathrm{C}-1), 121.7(\mathrm{C}-5), 126.5$ (C-4), 130.8 (C$6), 144.4(\mathrm{HC}=\mathrm{N})$ and $155.4(\mathrm{C}-2) ; m / z\left(\mathrm{EI}^{+}\right) 189\left(\mathrm{M}^{+}, 22 \%\right)$, $158(22), 143(100), 130(15), 115(22), 103(15), 91(33)$ and 77 (21) (Found: M^{+}, 189.0790. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires M, 189.0790).

2-(Prop-2-ynyloxy)benzaldehyde O-Benzyloxime 5b.-In the same way as for compound 5a, 2-(prop-2-ynyloxy)benzaldehyde $4(1.00 \mathrm{~g}, 6.24 \mathrm{mmol}), O$-benzylhydroxylamine hydrochloride $(1.59 \mathrm{~g}, 9.99 \mathrm{mmol})$ and pyridine $(1.09 \mathrm{~g}, 13.70 \mathrm{mmol})$ were stirred in methanol ($20 \mathrm{~cm}^{3}$) at room temperature overnight. Chromatography on silica gel with dichloromethane-light petroleum ($7: 3 \mathrm{v} / \mathrm{v}$) as eluent gave the title compound $\mathbf{5 b}$ as prisms ($1.03 \mathrm{~g}, 62 \%$), m.p. $54^{\circ} \mathrm{C}$ (from light petroleum) (Found: $\mathrm{C}, 76.9 ; \mathrm{H}, 5.8 ; \mathrm{N}, 5.2 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 76.96 ; \mathrm{H}, 5.70 ; \mathrm{N}$, 5.28%); R_{f} (dichloromethane-light petroleum, $\left.7: 3, \mathrm{v} / \mathrm{v}\right) 0.69$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} \quad 3300 \mathrm{~s}, 2940 \mathrm{~s}, 2910 \mathrm{w}, 2860 \mathrm{w}, 1600 \mathrm{~m}$, 1570 m and $1450 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.44(1 \mathrm{H}, \mathrm{t}$, $\left.J_{3^{\prime}, 1}, 2.4,3^{\prime}-\mathrm{H}\right), 4.60\left(2 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 6.91$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.3,3-\mathrm{H}\right), 6.93\left(1 \mathrm{H}, \mathrm{t}, J_{5,6}=J_{5,4} 7.7,5-\mathrm{H}\right), 7.23-$ $7.41\left(6 \mathrm{H}\right.$, complex $\mathrm{m}, 4-\mathrm{H}$ and $\mathrm{H}_{s}, \mathrm{H}_{m}$ and H_{p} in $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 7.82$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{6,4} 1.6,6-\mathrm{H}\right)$ and $8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 56.2\left(\mathrm{C}-1^{\prime}\right), 75.8\left(\mathrm{C}-2^{\prime}\right), 76.2\left(\mathrm{PhCH}_{2}\right), 78.1$ (C-3'), 112.7 (C-3), 121.5 (C-1), 121.6 (C-5), 126.5 (C-4), 127.8 $\left(\mathrm{C}_{p}\right.$ in $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 128.23$ and $128.28\left(\mathrm{C}_{o}\right.$ and C_{m} in $\left.\mathrm{PhCH} \mathrm{CH}_{2} \mathrm{O}\right)$, $130.8(\mathrm{C}-6), 137.6\left(\mathrm{C}-1\right.$ in $\left.\mathrm{PhCH}_{2} \mathrm{O}\right), 144.4(\mathrm{HC}=\mathrm{N})$ and 155.4 (C-2); $m / z\left(\mathrm{CI}^{+}\right) 266\left(\mathrm{MH}^{+}, 100 \%\right), 175(2), 160(5), 122(2), 108$ (5) and 91 (8) (Found: $\mathrm{MH}^{+}, 266.1181 . \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $M, 266.1181$).

4-Methoxyamino-3-methylidenechromane 3a from 2-(Prop-2ynyloxy)benzaldehyde O-Methyloxime 5a.-The oxime 5a (200 $\mathrm{mg}, 1.06 \mathrm{mmol}$) was dissolved in benzene ($0.02 \mathrm{~mol} \mathrm{dm}{ }^{-3} 5 \mathrm{a} ; 53$ cm^{3}) and the solution degassed by bubbling a steady stream of nitrogen through it for 30 min . The solution was heated at reflux under a nitrogen atmosphere and a solution of tributyltin hydride ($369 \mathrm{mg}, 1.27 \mathrm{mmol}$) and AIBN ($35 \mathrm{mg}, 0.21 \mathrm{mmol}$) in benzene ($10 \mathrm{~cm}^{3}$) was added to it over 6 h . Heating was continued for a further 6 h . Benzene was removed under reduced pressure and the residue was diluted with methanol (2 cm^{3}). A few drops of glacial acetic acid were added to the reaction mixture which was then heated at reflux for 12 h , before it was concentrated under reduced pressure. Chromatography of the residue on silica gel with diethyl ether-light petroleum (1:4, v/v) as eluent afforded the chromane 3a (105 $\mathrm{mg}, 52 \%$) as a pale yellow oil, R_{f} (diethyl ether-light petroleum, $1: 9, v / v) 0.27$.

4-Benzyloxyamino-3-methylidenechromane 3b from 2-(Prop-2-ynyloxy)benzaldehyde O-Methyloxime 5b.-In the same way as for the reaction of compound $\mathbf{5 a}$, the oxime $5 \mathrm{~b}(320 \mathrm{mg}, 1.26$ mmol)was treated with tributyltin hydride ($442 \mathrm{mg}, 1.52 \mathrm{mmol}$) and AIBN ($40 \mathrm{mg}, 0.25 \mathrm{mmol}$) in benzene, followed by glacial acetic acid in methanol. Chromatography of the residue on silica gel with diethyl ether-light petroleum $(1: 4, \mathrm{v} / \mathrm{v})$ yielded the chromane $\mathbf{3 b}(188 \mathrm{mg}, 56 \%)$ as a pale yellow oil, R_{f} (diethyl ether-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}) 0.39$.

2-(2-Bromobenzyloxy)benzaldehyde 6.-As for the preparation of compound 1a, 2-hydroxybenzaldehyde ($1.00 \mathrm{~g}, 8.19$ mmol), 2-bromobenzyl bromide ($2.46 \mathrm{~g}, 9.83 \mathrm{mmol}$) and anhydrous potassium carbonate ($2.26 \mathrm{~g}, 16.4 \mathrm{mmol}$) were heated at reflux in dry acetone $\left(30 \mathrm{~cm}^{3}\right)$ for 3 h . Chromatography on silica gel with dichloromethane-light petroleum ($1: 1, \mathrm{v} / \mathrm{v}$) as eluent yielded the title compound 6 $(2.22 \mathrm{~g}, 93 \%)$ as rhomboids, m.p. $91-92^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 57.7 ; \mathrm{H}, 3.8 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 57.75 ; \mathrm{H}, 3.81 \%$); R_{f} (dichloromethane-light petroleum, $1: 1, \mathrm{v} / \mathrm{v}) 0.43 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3050 \mathrm{w}, 2890-$ $2860 \mathrm{w}, 1735 \mathrm{~s}(\mathrm{C}=\mathrm{O}) 1600 \mathrm{~s}, 1580 \mathrm{w}$ and 1480 s and $765 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 7.03-7.08(2 \mathrm{H}$, complex $\mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 7.20\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 6}, 1.7, J_{4^{\prime}, 5}, 7.5$ and $\left.J_{4^{\prime}, 3^{\prime}} 7.9,4^{\prime}-\mathrm{H}\right), 7.35\left(1 \mathrm{H}, \mathrm{dt}, J_{5^{\prime}, 3^{\prime}} 1.2\right.$ and $\left.J_{5^{\prime}, 6^{\prime}} 7.5,5^{\prime}-\mathrm{H}\right)$, $7.51-7.57\left(2 \mathrm{H}\right.$, complex $\mathrm{m}, 6^{\prime}-\mathrm{H}$ and $\left.4-\mathrm{H}\right), 7.59\left(1 \mathrm{H}, \mathrm{dd}, 3^{\prime}-\mathrm{H}\right)$, $7.87\left(1 \mathrm{H}\right.$, dd, $J_{6,4} 1.6$ and $\left.J_{6,5} 7.6,6-\mathrm{H}\right)$ and $10.58(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArCH}=\mathrm{O}) ; \delta_{\mathrm{c}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 69.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.03$ (C-3), 121.2 (C-5), 122.3 (C-2'), 125.3 (C-1), 127.7 (C-5'), 128.7 (C-6'), 128.8 (C-4'), 129.6 (C-6), 132.8 (C-3'), 135.3 (C-1'), $135.9(\mathrm{C}-4), 160.6(\mathrm{C}-2)$ and $189.4(\mathrm{C}=0) ; m / z\left(\mathrm{CI}^{+}\right) 290 / 292$ ($\mathrm{MH}^{+}, 100 \%$), 262/264 (8), 211 (8), 185/187 (79), 168/170 (12), 121 (9), 106 (2) and 89 (3) (Found: $\mathrm{MH}^{+}, 291.0021$. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrO}_{2}$ requires $M, 291.0021$).

2-(2-Bromobenzyloxy)benzaldehyde O-Methyloxime 7a.-As for the preparation of compound 2a, 2-(2-bromobenzyloxy)benzaldehyde $6(1.00 \mathrm{~g}, 3.43 \mathrm{mmol})$ was stirred overnight at room temperature in pyridine $\left(10 \mathrm{~cm}^{3}\right)$ with O-methylhydroxylamine hydrochloride ($0.46 \mathrm{~g}, 5.50 \mathrm{mmol}$). Chromatography on silica gel with diethyl ether-light petroleum $(1: 9, \mathrm{v} / \mathrm{v})$ as eluent gave a mixture of the E and Z isomers of the oxime ether 7a $(0.96 \mathrm{~g}, 87 \%)$ as needles, m.p. $75.5-76{ }^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 56.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 4.3 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 56.21 ; \mathrm{H}, 4.40 ; \mathrm{N}, 4.37 \%$); R_{f} (diethyl ether-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}) 0.46$ and $0.35 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3000 \mathrm{w}$, $2940 \mathrm{~m}, 2810 \mathrm{~m}, 1605 \mathrm{~s}(\mathrm{C}=\mathrm{N}), 1595 \mathrm{~s}, 1570 \mathrm{~m}$ and 1485 s .

Major isomer ($R_{\mathrm{f}} 0.46$): $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 3.96$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.90\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.2,3-\mathrm{H}\right)$, $6.95\left(1 \mathrm{H}, \mathrm{t}, J_{5,6}=J_{5,4} 7.6,5-\mathrm{H}\right), 7.14\left(1 \mathrm{H}, \mathrm{ddd}, J_{4^{\prime}, 6^{\prime}} 1.7, J_{4^{\prime}, 5^{\prime}} 7.5\right.$
and $\left.J_{4^{\prime}, 3^{\prime}} 7.9,4^{\prime}-\mathrm{H}\right), 7.26-7.32\left(2 \mathrm{H}\right.$, complex m, 4-H and $\left.5^{\prime}-\mathrm{H}\right)$, $7.49\left(1 \mathrm{H}, \mathrm{dd}, J_{6^{\prime}, 5}, 7.7,6^{\prime}-\mathrm{H}\right), 7.54\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 5^{\prime}} 1.1,3^{\prime}-\mathrm{H}\right), 7.81$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{6,4} 1.7,6-\mathrm{H}\right), 8.54(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 61.8(\mathrm{OMe}), 72.5\left(\mathrm{OCH}_{2}\right), 112.5(\mathrm{C}-3), 121.1$ (C-2'), 121.3 (C-5), 122.2 (C-1), 126.6 (C-5'), 127.5 (C-6'), 128.7 (C-4'), 129.3 (C-6), 131.0 (C-3'), 132.6 (C-4), 135.8 (C-1'), 144.5 $(\mathrm{C}=\mathrm{N})$ and $156.2(\mathrm{C}-2) ; m / z\left(\mathrm{EI}^{+}\right) 287 / 289(10 \%), 272 / 274$ (5), 168/170 (100), 119 (4), 91 (98) and 77 (7) (Found: MH^{+}, 320.0286. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{2}$ requires $M, 320.0286$).

2-(2-Bromobenzyloxy)benzaldehyde O-tert-Butyloxime 7b.As for the preparation of compound 2a, 2-(2-bromobenzyloxy)benzaldehyde $6(1.00 \mathrm{~g}, 3.43 \mathrm{mmol})$ and O-tert-butylhydroxylamine hydrochloride ($0.52 \mathrm{~g}, 4.12 \mathrm{mmol}$) were stirred overnight at room temperature in pyridine $\left(10 \mathrm{~cm}^{3}\right)$. Chromatography on silica gel with diethyl ether-light petroleum $(1: 9, v / v)$ as eluent afforded the oxime ether $\mathbf{7 b}(1.04 \mathrm{~g}, 84 \%)$ as needles, m.p. 53$56^{\circ} \mathrm{C}$ [from light petroleum (b.p. $60-80^{\circ} \mathrm{C}$)] (Found: C, 59.25; $\mathrm{H}, 5.5 ; \mathrm{N}, 3.9 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 59.67 ; \mathrm{H}, 5.57 ; \mathrm{N}$, 3.87%); R_{f} (diethyl ether-light petroleum, $\left.1: 9, \mathrm{v} / \mathrm{v}\right) 0.48$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3060 \mathrm{w}, 2960 \mathrm{~m}, 2920 \mathrm{~m}, 2890 \mathrm{w}, 1600 \mathrm{~m}$ $(\mathrm{C}=\mathrm{N}), 1565 \mathrm{w}, 1480 \mathrm{~m}, 1445 \mathrm{~m}$ and $1230 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.37\left[9 \mathrm{H}, \mathrm{s}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 5.11\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.90$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.3,3-\mathrm{H}\right), 6.96\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=J_{5,6} 7.5,5-\mathrm{H}\right), 7.16$ (1 H , dd, $J_{4^{\prime}, 5^{\prime}} 7.4$ and $\left.J_{4^{\prime}, 3^{\prime}}, 8.0,4^{\prime}-\mathrm{H}\right), 7.26(1 \mathrm{H}, \mathrm{dd}, 4-\mathrm{H}), 7.31$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} 7.6,5^{\prime}-\mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right)$, $7.88(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$ and $8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}) ; \delta_{\mathrm{c}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 27.6\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 69.6\left(\mathrm{OCH}_{2}\right), 78.9\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right]$, 112.4 (C-3), 121.1 (C-5), 122.1 (C-2'), 122.1 (C-1), 126.4 (C-5'), 127.5 (C-6'), 128.8 (C-4'), 129.2 (C-6), 130.4 (C-3'), 132.5 (C-4), $135.9\left(\mathrm{C}-1^{\prime}\right), 142.8(\mathrm{C}=\mathrm{N})$ and $156.0(\mathrm{C}-2) ; m / z\left(\mathrm{CI}^{+}\right) 361 / 363$ ($\mathrm{M}^{+}, 100 \%$), 287/289 (5), 226 (2), 210 (4), 194 (10) and 169 (1) (Found: MH^{+}, 362.0756. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ requires M, 362.0755).

11-Methoxyamino-6,11-dihydrobenzo[b,e]oxepine 8a.Method C for radical cyclisation. A degassed solution of the 2-(2-bromobenzyloxy)benzaldehyde O-methyloxime 7 a (300 mg , $0.94 \mathrm{mmol})$ in benzene $\left(95 \mathrm{~cm}^{3}, 0.01 \mathrm{~mol} \mathrm{dm}^{-3} 7 \mathrm{a}\right)$ was heated at reflux under a nitrogen atmosphere. A solution of tributyltin hydride ($327 \mathrm{mg}, 1.12 \mathrm{mmol}$) and AIBN ($30 \mathrm{mg}, 0.19 \mathrm{mmol}$) in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture via a syringe pump over 12 h . Heating was continued for a further 12 h . Benzene was removed under reduced pressure. Chromatography on silica gel with diethyl ether-light petroleum (1:9, v/v) as eluent afforded the hydroxylamine $\mathbf{8 a}(111 \mathrm{mg}, 49 \%$) and the reduction product $9 \mathrm{a}(66 \mathrm{mg}, 29 \%$) as pale yellow oils.

Data for compound 8a: R_{f} (diethyl ether-light petroleum, 1:9, $\mathrm{v} / \mathrm{v}) 0.31$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3240 \mathrm{w}, 3040 \mathrm{w}, 2950 \mathrm{~s}, 2920 \mathrm{~s}, 2890 \mathrm{~m}$, $2800 \mathrm{w}, 1600 \mathrm{~m}, 1540 \mathrm{~m}, 1480 \mathrm{~s}$ and $1440 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.83\left(1 \mathrm{H}, \mathrm{d}, J_{2 \mathrm{x}, 2 \mathrm{y}} 12.8,6-\mathrm{H}_{\mathrm{x}}\right), 4.92$ $(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 5.90(1 \mathrm{H}, \mathrm{br}$ s, NH $), 6.28\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}_{\mathrm{y}}\right), 6.89(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{4,2} 1.2, J_{4,3} 8.2,4-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{td}, J_{2,1}=J_{9,10} 7.4,2-\mathrm{H}\right)$ and $7.16-7.36(6 \mathrm{H}$, complex m, $7-\mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, 10-\mathrm{H}, 1-\mathrm{H}$ and $3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 62.5\left(\mathrm{OCH}_{3}\right), 70.6(\mathrm{C}-11)$, 71.0 (C-6), 120.5 (C-3), 121.5 (C-4), 124.1 (C-11a), 128.4 (C-8 and C-1), 129.8 (C-7), 130.4 (C-10), 132.9 (C-9), 136.4 (C-6a), $138.0(\mathrm{C}-10 \mathrm{a})$ and $158.1(\mathrm{C}-4 \mathrm{a}) ; m / z\left(\mathrm{CI}^{+}\right) 240\left([\mathrm{M}-\mathrm{H}]^{+}\right.$, 38%), 225 (2), 210 (8) and 195 (100) [Found: $(\mathrm{M}-\mathrm{H})^{+}$, 240.1025. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\left.M, 240.1025\right]$.

2-Benzyloxybenzaldehyde O-methyloxime 9a. $\quad R_{\mathrm{f}}$ (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) $0.26 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3040 \mathrm{w}$, $3000 \mathrm{w}, 2960 \mathrm{~s}, 2940 \mathrm{~s}, 2900 \mathrm{~m}, 2820 \mathrm{~m}, 1600 \mathrm{~s}, 1590 \mathrm{~m}, 1570 \mathrm{~m}$, $1480 \mathrm{~s}, 1450 \mathrm{~s}$ and $1380 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 3.95(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.6,3-\mathrm{H}\right), 6.94$ $\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=J_{5,6} 7.6,5-\mathrm{H}\right), 7.25-7.41(6 \mathrm{H}$, complex m, 4-H and $\mathrm{H}_{o}, \mathrm{H}_{m}$ and H_{p} in $\left.P h \mathrm{CH}_{2}\right), 7.82\left(1 \mathrm{H}, \mathrm{dd}, J_{6,4} 1.8, J_{6,5} 7.7\right.$, $6-\mathrm{H})$ and $8.52(1 \mathrm{H}, \mathrm{s}, \mathrm{RHC}=\mathrm{N}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$
$61.8\left(\mathrm{OCH}_{3}\right), 70.2\left(\mathrm{OCH}_{2}\right), 112.4(\mathrm{C}-3), 121.0(\mathrm{C}-1$ and $\mathrm{C}-5)$, $126.4\left(\mathrm{C}_{p}\right), 127.2\left(\mathrm{C}_{o}\right), 127.9(\mathrm{C}-6), 128.5\left(\mathrm{C}_{m}\right), 131.0(\mathrm{C}-4), 136.5$ (C-1 in PhCH_{2}), 144,6 (HC=N) and $156.6(\mathrm{C}-2) ; m / z\left(\mathrm{EI}^{+}\right) 241$ $\left(\mathrm{M}^{+}, 3 \%\right), 210(48), 195(15)$ and 91 (100) (Found: $\mathrm{M}^{+}, 241.1100$. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $M, 241.1103$).

11-(tert-Butoxyamino)-6,11-dihydrodibenzo[b,e]oxepine 8b. -2-(2-Bromobenzyloxy)benzaldehyde O-tert-butyloxime 7b $(250 \mathrm{mg}, 0.69 \mathrm{mmol})$ was treated with tributyltin hydride (400 $\mathrm{mg}, 1.37 \mathrm{mmol}$) and AIBN ($25 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dry benzene according to method C. Chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent gave the cyclised product $8 \mathrm{~b}(92 \mathrm{mg}, 47 \%)$ as a clear colourless oil and the reduction product $9 \mathrm{~b}\left(70 \mathrm{mg}, 36 \%\right.$) as needles, m.p. $88-89^{\circ} \mathrm{C}$ (from light petroleum).

Data for compound 8b: R_{f} (diethyl ether-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}) \quad 0.33 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3010 \mathrm{w}, 2980 \mathrm{~s}, 2910 \mathrm{~m}$, $2890 \mathrm{~m}, 1600 \mathrm{~m}, 1570 \mathrm{~m}, 1480 \mathrm{~s}, 1360 \mathrm{~s}, 1310 \mathrm{~m}$ and 1230 s ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.88\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 4.81$ ($1 \mathrm{H}, \mathrm{d}, J_{6 x, 6 y} 12.4,6-\mathrm{H}_{\mathrm{x}}$), $4.86(1 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}), 5,27(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 6.34\left(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}_{\mathrm{y}}\right), 6.85\left(1 \mathrm{H}, \mathrm{dd}, J_{4,2} 1.3\right.$ and $\left.J_{4,3} 8.4,4-\mathrm{H}\right)$, $6.90\left(1 \mathrm{H}, \mathrm{td}, J_{2,1}=J_{2,3} 7.5,2-\mathrm{H}\right)$ and $7.15-7.33(6 \mathrm{H}$, complex $\mathrm{m}, 7-\mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}, 2-\mathrm{H}, 1-\mathrm{H}$ and $3-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 26.8 \quad\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 70.68(\mathrm{C}-11), 70.72(\mathrm{C}-6), 76.9$ $\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 120.3(\mathrm{C}-3), 121.1(\mathrm{C}-4), 123.3(\mathrm{C}-11 \mathrm{a}), 128.2(\mathrm{C}-8),}\right.$ 128.4 (C-1), 129.8 (C-7), 130.6 (C-2), 133.7 (C-9), 136.4 (C-6a), 138.7 (C-10a) and 158.2 (C-4a); $m / z\left(\mathrm{EI}^{+}\right) 284\left(\mathrm{MH}^{+}, 2 \%\right), 210$ (3), 195 (100) and 90 (7) (Found: $\mathrm{MH}^{+}, 284.1651 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 284.1650$).

2-Benzyloxybenzaldehyde O-tert-butyloxime 9b. (Found: C, $76.4 ; \mathrm{H}, 7.7 ; \mathrm{N}, 5.05 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}$ requires $\mathrm{C}, 76.29 ; \mathrm{H}, 7.47$; $\mathrm{N}, 4.94 \%$); R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) 0.40 ; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3020 \mathrm{w}, 2960 \mathrm{~m}, 2910 \mathrm{w}, 2860 \mathrm{w}, 1600 \mathrm{~m}$, $1570 \mathrm{w}, 1480 \mathrm{~m}$ and $1360 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.35$ [$\left.9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 5.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.87\left(1 \mathrm{H}, \mathrm{d}, J_{3,4} 8.4\right.$, $3-\mathrm{H}), 6.92\left(1 \mathrm{H}, \mathrm{t}, J_{5,4}=J_{5,6} 7.7,5-\mathrm{H}\right), 7.23\left(1 \mathrm{H}\right.$, ddd, $J_{4,6} 1.8$, 4-H), 7.27-7.38 (5 H , complex $\mathrm{m}, \mathrm{H}_{o}, \mathrm{H}_{m}, \mathrm{H}_{p}$ in PhCH_{2}), 7.88 $(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$ and $8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{RCH}=\mathrm{N}) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 27.6\left(\mathrm{CH}_{3}\right), 70.2\left(\mathrm{OCH}_{2}\right), 78.8\left(\mathrm{Me}_{3} \mathrm{C}\right), 112.3$ (C-3), $120.9(\mathrm{C}-5), 122.0(\mathrm{C}-1), 126.2\left(\mathrm{C}_{p}\right), 127.3\left(\mathrm{C}_{o}\right), 128.5\left(\mathrm{C}_{m}\right)$, $130.4(\mathrm{C}-4), 136.6\left(\mathrm{C}-1\right.$ in $\left.\mathrm{PhCH}_{2}\right), 142.9(\mathrm{C}=\mathrm{N})$ and $156.4(\mathrm{C}-2)$; $m / z\left(\mathrm{CI}^{+}\right), 284\left(\mathrm{MH}^{+}, 100 \%\right), 242(24), 228(5), 210(14), 194(5)$, 122 (22), 108 (12) and 91 (18) (Found: MH^{+}, 284.1651. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $M, 284.1651$).

3-(2-Bromophenyl)propanal O-Methyloxime 11a.-3-(2Bromophenyl)propanal $10 \mathrm{a}(0.49 \mathrm{~g}, 2.32 \mathrm{mmol})$ and O methylhydroxylamine hydrochloride $(0.23 \mathrm{~g}, 2.78 \mathrm{mmol})$ were stirred in pyridine $\left(5 \mathrm{~cm}^{3}\right)$ at room temperature for 24 h . Pyridine was removed under reduced pressure and the residue was diluted with diethyl ether, washed with water and the organic layer dried $\left(\mathrm{MgSO}_{4}\right)$. The organic layer was concentrated under reduced pressure and chromatography of the residue on silica gel with diethyl ether-light petroleum ($3: 7$, v / v) afforded a $1: 1$ mixture of E and Z isomers of the title compound $11 \mathrm{a}\left(0.47 \mathrm{~g}, 84 \%\right.$) as a clear colourless oil, R_{f} (diethyl ether-light petroleum, $3: 7, \mathrm{v} / \mathrm{v}) 0.54$ and $0.49 ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 3050m, 2930s, 2900s, 2810m, 1630w (C=N), 1590w, 1565m, $1470 \mathrm{~s}, 1440 \mathrm{~s}, 1280-1020 \mathrm{~s}$ and $750 \mathrm{~s} ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}^{+}\right) 241 / 243\left(\mathrm{MH}^{+}\right.$, 100%), 211/213 (3), 181/183 (2), 162 (25), 132 (20) and 117 (2) (Found: $\mathrm{MH}^{+}, 242.011 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNO}$ requires $M, 242.0180$).
E Isomer: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.49\left(2 \mathrm{H}, \mathrm{td}, J_{2,1}\right.$ $\left.5.9, J_{2,3} 8.8,2-\mathrm{H}\right), 2.91(2 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.04$ (1 H , ddd overlapping with Z isomer, $\left.4^{\prime}-\mathrm{H}\right), 7.21(2 \mathrm{H}$, complex overlapping with Z isomer, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.39(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{H})$ and $7.51\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}} 7.7,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $29.6(\mathrm{C}-2), 33.2(\mathrm{C}-3), 61.2\left(\mathrm{OCH}_{3}\right), 127.3\left(\mathrm{C}-2^{\prime}\right), 127.5\left(\mathrm{C}-5^{\prime}\right)$,
127.9 (C-4'), 130.3 (C-6'), 132.8 (C-3'), 139.8 (C-1') and 149.3 (C-1).
Z Isomer: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2,64\left(2 \mathrm{H}, \mathrm{dt}, J_{2,1}\right.$ $\left.5.4, J_{2,3} 8.8,2-\mathrm{H}\right), 2,89(2 \mathrm{H}, \mathrm{t}, 3-\mathrm{H}), 3,85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.67$ $(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{H}), 7.04\left(1 \mathrm{H}\right.$, ddd overlapping with E isomer, $\left.4^{\prime}-\mathrm{H}\right)$, $7.21\left(2 \mathrm{H}\right.$, complex overlapping with E isomer, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.39(1 \mathrm{H}, \mathrm{t}, 1-\mathrm{H})$ and $7.51\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime} .4}, 7.7,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.5(\mathrm{C}-2), 32.4(\mathrm{C}-3), 61.6\left(\mathrm{OCH}_{3}\right), 127.3$ (C-2'), 127.5 (C-5'), 127.9 (C-4'), 130.1 (C-6'), 132.6(C-3'), 139.8 (C-1') and $150.0(\mathrm{C}-1)$.

4-(2-Bromophenyl)butan-2-one O-Methyloxime 11b.-As for compound 10a, 4-(2-bromophenyl)butan-2-one 10b (3.00 g, 13.22 mmol) and O -methylhydroxylamine hydrochloride $(1.65 \mathrm{~g}, 19.82 \mathrm{mmol})$ were stirred at room temperature in pyridine ($10 \mathrm{~cm}^{3}$) for 24 h . Chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent yielded a mixture of E and Z isomers of 11 b as a clear, colourless oil $(3.11 \mathrm{~g}, 92 \%), R_{\mathrm{f}}$ (diethyl ether-light petroleum, $\left.1: 9, \mathrm{v} / \mathrm{v}\right) 0.36$ and 0.31 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3050 \mathrm{w}, 2980 \mathrm{w}, 2930 \mathrm{~s}, 2890 \mathrm{~m}, 2810 \mathrm{~m}$, $1640 \mathrm{w}(\mathrm{C}=\mathrm{N}), 1560 \mathrm{w}, 1470 \mathrm{~s}, 1440 \mathrm{~s}$ and $750 \mathrm{~s} ; m / z\left(\mathrm{CI}^{+}\right) 256 / 258$ $\left(\mathrm{MH}^{+}, 100 \%\right), 226 / 228(10), 176$ (18), 162 (3), 146 (15) and 131 (20) (Found: MH^{+}, 256.0337. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO}$ requires M, 256.0337).
E Isomer ($R_{\mathrm{f}} 0.36$): $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.68(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}), 2.45(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.93(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $7.04\left(1 \mathrm{H}\right.$, ddd overlapping with Z isomer, $\left.4^{\prime}-\mathrm{H}\right), 7.21(2 \mathrm{H}$, complex m overlapping with Z isomer, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$ and 7.51 ($\left.1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4}, 8.1,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.1$ (C-1), 33.2 (C-3), $36.0(\mathrm{C}-4), 61.0\left(\mathrm{OCH}_{3}\right), 124.2\left(\mathrm{C}-2^{\prime}\right), 127.4$ (C-5'), 127.7 (C-4'), 130.3 (C-6'), 132.7 (C-3'), 140.3 (C-1') and 156.2 (C-2).
Z Isomer $\left(R_{\mathrm{f}} 0.31\right): \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.23(3 \mathrm{H}$, $\mathrm{s}, 1-\mathrm{H}), 2.58(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.93(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 7.04\left(1 \mathrm{H}\right.$, ddd overlapping with E isomer, $\left.4^{\prime}-\mathrm{H}\right), 7.21$ $\left(2 \mathrm{H}\right.$, complex m overlapping with E isomer, $5^{\prime}-\mathrm{H}$ and $6^{\prime}-\mathrm{H}$) and $7.51\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}} 8.1,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.1$ $(\mathrm{C}-1), 29.4(\mathrm{C}-3), 31.9(\mathrm{C}-4), 61.0\left(\mathrm{OCH}_{3}\right), 124.2\left(\mathrm{C}-2^{\prime}\right), 127.4$ (C-5'), 127.7 (C-4'), 130.2 (C-6'), 132.6 (C-3'), 140.2 (C-1') and 156.8 (C-2).

1-Methoxyaminoindane 12a.-3-(2-Bromophenyl)propanal O-methyloxime $11 \mathrm{a}(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ was treated with tributyltin hydride ($240 \mathrm{mg}, 0.83 \mathrm{mmol}$) and AIBN ($80 \mathrm{mg}, 0.08$ mmol) in benzene according to method C. Chromatography of the residue on silica gel with diethyl ether-light petroleum ether ($3: 7, \mathrm{v} / \mathrm{v}$) as eluent gave the title compound 12a as a colourless oil ($93 \mathrm{mg}, 69 \%$), R_{f} (diethyl ether-light petroleum, $3: 7, \mathrm{v} / \mathrm{v}$) $0.34 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3010 \mathrm{~m}, 2940 \mathrm{~s}, 2890 \mathrm{~m}, 2840 \mathrm{~m}, 1450 \mathrm{~s}$ and $1210 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.02\left(1 \mathrm{H}\right.$, dddd, $J_{2 \times, 1 \mathrm{x}}$ $4.8, J_{2 \mathrm{x}, 3 \mathrm{x}} 5.4, J_{2 \mathrm{x}, 3 \mathrm{y}} 8.8$ and $\left.J_{2 \mathrm{x}, 2 \mathrm{y}} 13.3,2-\mathrm{H}_{\mathrm{x}}\right), 2.32(1 \mathrm{H}$, dddd, $J_{2 y, 3 y} 6.5, J_{2 y, 1} 7.3$ and $\left.J_{2 \mathrm{y}, 3 \mathrm{x}} 8.8,2-\mathrm{H}_{\mathrm{y}}\right), 2.84\left(1 \mathrm{H}\right.$, ddd, $J_{3 \mathrm{x}, 3 \mathrm{y}}$ $\left.15.1,3-\mathrm{H}_{\mathrm{x}}\right), 3.04\left(1 \mathrm{H}\right.$, ddd, $\left.3-\mathrm{H}_{\mathrm{y}}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.59(1 \mathrm{H}$, dd, 1-H), $5.05\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{NHOCH}_{3}\right), 7.15-7.24(3 \mathrm{H}$, complex m, $5-\mathrm{H}, 6-\mathrm{H}$ and $7-\mathrm{H})$ and $7.40\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 6.5,4-\mathrm{H}\right) ; \delta_{\mathrm{c}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 30.2$ (C-2 or $\mathrm{C}-3$), 30.4 (C-3 or $\mathrm{C}-2$), 62.1 $\left(\mathrm{OCH}_{3}\right), 65.6(\mathrm{C}-1), 124.8(\mathrm{C}-6), 124.9(\mathrm{C}-7), 126.2(\mathrm{C}-5), 127.9$ (C-4), 142.1 (C-3a) and $144.3(\mathrm{C}-7 \mathrm{a}) ; m / z\left(\mathrm{CI}^{+}\right) 164\left(\mathrm{MH}^{+}\right.$, 100%), 132 (21), 117 (67) and 91 (2) (Found: $\mathrm{MH}^{+}, 164.1075$. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$ requires $M, 164.1075$).

1-Methoxyamino-1-methylindane 12b.-4-(2-Bromophenyl)-butan-2-one O-methyloxime $11 \mathrm{~b}(1.70 \mathrm{~g}, 6.66 \mathrm{mmol})$ was treated with tributyltin hydride ($3.87 \mathrm{~g}, 13.31 \mathrm{mmol}$) and AIBN $(0.11 \mathrm{~g}, 0.67 \mathrm{mmol})$ according to method C. Chromatography on silica gel with diethyl ether-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent afforded the title compound $\mathbf{1 2 b}$ as a clear, colourless oil $(0.87 \mathrm{~g}, 74 \%), R_{\mathrm{f}}$ (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) 0.17 ;
$v_{\max }($ film $) / \mathrm{cm}^{-1} 3230 \mathrm{br} \mathrm{w}, 3060 \mathrm{w}, 3010 \mathrm{w}, 2960 \mathrm{~s}, 2910 \mathrm{~s}, 2880 \mathrm{~s}$, $2840 \mathrm{~m}, 2800 \mathrm{~m}, 1600 \mathrm{w}, 1580 \mathrm{w}, 1450 \mathrm{~s}, 1370 \mathrm{~m}$ and $750 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{3} \mathrm{Si}\right) 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.93\left(1 \mathrm{H}, \mathrm{ddd}, J_{2 \mathrm{x}, 3 \mathrm{x}}\right.$ $6.6, J_{2 \mathrm{x}, 3 \mathrm{y}} 8.6$ and $\left.J_{2 \mathrm{x}, 2 \mathrm{y}} 13.1,2-\mathrm{H}_{\mathrm{x}}\right), 2.27\left(1 \mathrm{H}\right.$, ddd, $J_{2 \mathrm{y}, 3 \mathrm{y}} 5,0$ and $\left.J_{2 \mathrm{y}, 3 \mathrm{x}} 8.4,2-\mathrm{H}_{\mathrm{y}}\right), 2.82\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 \mathrm{x}, 3 \mathrm{y}} 15.9,3-\mathrm{H}_{\mathrm{x}}\right), 2.97(1 \mathrm{H}$, ddd, $3-\mathrm{H}_{\mathrm{y}}$), $3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.26(1 \mathrm{H}$, br s, NHOCH 3$), 7.13-7.19$ (3 H , complex m, 5-H, 6-H and $7-\mathrm{H}$) and $7.28(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 23.9\left(\mathrm{CH}_{3}\right), 29.7(\mathrm{C}-2$ or $\mathrm{C}-3)$, $36.6(\mathrm{C}-3$ or $\mathrm{C}-2), 62.9\left(\mathrm{OCH}_{3}\right), 69.3(\mathrm{C}-1), 123,3(\mathrm{C}-6), 124.7(\mathrm{C}-$ 7), 126.2 (C-5), 127.7 (C-4), 143.6 (C-3a) and 146.2 (C-7a); m / z $\left(\mathrm{CI}^{+}\right) 178\left(\mathrm{MH}^{+}, 12 \%\right), 146(15)$ and 131 (100) (Found: MH^{+}, 178.1232. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ requires $M, 178.1232$).

Ethyl 1-(2-Bromobenzyl)-2-oxocyclopentanecarboxylate 13a.-Ethyl 2-oxocyclopentanecarboxylate $(2.00 \mathrm{~g}, \quad 12.82$ mmol) in tetrahydrofuran (THF) ($10 \mathrm{~cm}^{3}$) was added dropwise to sodium hydride $(370 \mathrm{mg}, 15.42 \mathrm{mmol}, 80 \%$ dispersion in mineral oil) suspended in a solution of 1,3 -dimethyl-3,4,5,6-tetrahydropyrimidin-2($1 H$)-one (DMPU) ($1.97 \mathrm{~g}, 15.42 \mathrm{mmol}$) and THF ($20 \mathrm{~cm}^{3}$). After the mixture had been stirred at room temperature for 1 h , 2-bromobenzyl bromide ($3.85 \mathrm{~g}, 15.42$ mmol) in dry THF ($10 \mathrm{~cm}^{3}$) was added in one portion to it and the whole heated at reflux for 4 h . The reaction mixture was then poured into water and the product was extracted with diethyl ether. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and diethyl ether removed under reduced pressure. Chromatography of the residue on silica gel with ethyl acetate-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent gave the title compound 13a as a clear colourless oil ($3.01 \mathrm{~g}, 72 \%$); R_{f} (ethyl acetate-light petroleum, $1: 3, \mathrm{v} / \mathrm{v}$) 0.48 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} \quad 3025 \mathrm{w}, 2980-2860 \mathrm{~s}, \quad 1740 \mathrm{~s} \quad(\mathrm{C}=\mathrm{O})$, 1720s $\left(\mathrm{CO}_{2} \mathrm{Et}, \mathrm{C}=\mathrm{O}\right), 1560 \mathrm{w}, 1465 \mathrm{~s}, 1435 \mathrm{~s}, 1230 \mathrm{~s}$ and $750 \mathrm{~m} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.66-2.08$ (4 H , complex m, 4-H and $5-\mathrm{H}$), 2.31-2.53 (2 H , complex m, $3-\mathrm{H}), 3.31\left(1 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{ArCH}_{\mathrm{a}}\right.$), 3.54 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArCH}_{\mathrm{b}}$), 4.17 $\left[1 \mathrm{H}, \mathrm{dq}(\mathrm{AB}\right.$ system $\left.), J 11.8, \mathrm{OCH}_{\mathrm{a}}\right], 4.21[1 \mathrm{H}, \mathrm{dq}(\mathrm{AB}$ system $)$, $\left.\mathrm{OCH}_{\mathrm{b}}\right], 7.02-7.09(1 \mathrm{H}$, complex m, 4'-H), 7.10-7.24 (2 H , complex m, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $7.53\left(1 \mathrm{H}, \mathrm{d}, J_{3^{\prime}, 4^{\prime}}, 7.8,3^{\prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.0\left(\mathrm{CH}_{3}\right), 19.7(\mathrm{C}-4), 31.7$ $\left(\mathrm{ArCH}_{2}\right), 37.5(\mathrm{C}-5), 38.2(\mathrm{C}-3), 61.4(\mathrm{C}-1), 61.6\left(\mathrm{OCH}_{2}\right), 126.3$ (C-2'), 127.5(C-5'), 128.4(C-4'), $131.4\left(\mathrm{C}-6^{\prime}\right), 132.9\left(\mathrm{C}-3^{\prime}\right), 136.7$ (C-1'), $170.8\left(\mathrm{CO}_{2} \mathrm{Et}\right)$ and $214.7(\mathrm{C}-2) ; m / z\left(\mathrm{CI}^{+}\right) 341 / 343$ $\left[\left(\mathrm{M}+\mathrm{NH}_{3}\right)^{+}, 100 \%\right], 324 / 326\left(\mathrm{M}^{+}, 78\right), 295 / 297(2), 278 / 280$ (5), 261/263 (3), 245 (27), 185/187 (2), 172 (31) 155, (27), 128 (3) and 91 (2) (Found: $\mathrm{M}^{+}, 325.0439 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{3}$ requires M, $325.0439)$.

Ethyl 1-(2-Bromobenzyl)-2-oxocyclohexanecarboxylate

 13b.-As for the preparation of compound 13a, ethyl 2-oxocyclohexanecarboxylate $(4.94 \mathrm{~g}, 29.02 \mathrm{mmol})$ was successively treated with sodium hydride (80% dispersion in mineral oil; $0.84 \mathrm{~g}, 34.83 \mathrm{mmol}$) in a solution of dry THF $\left(50 \mathrm{~cm}^{3}\right)$ and DMPU ($4.46 \mathrm{~g}, 34.83 \mathrm{mmol}$) and 2-bromobenzyl bromide $(7.98 \mathrm{~g}, 31.92 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$. Chromatography on silica gel with diethyl ether-light petroleum ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent afforded the title compound $13 \mathrm{~b}(7.77 \mathrm{~g}, 79 \%$) as prisms, m.p. $47.5-48.5^{\circ} \mathrm{C}$ (from aqueous methanol) (Found: C, 56.65 ; H, 5.7. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{3}$ requires $\mathrm{C}, 56.65 ; \mathrm{H}, 5.65 \%$); R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}) \quad 0.33 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1}$ 3030w, 2980m, 2940s, $2860 \mathrm{~m}, 1760-1700 \mathrm{~s}\left(\mathrm{C}=\mathrm{O}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Et}\right)$, $1560 \mathrm{w}, 1465 \mathrm{~s}$ and $1430 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.20$ ($3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}$), 1.52-1.80 (4 H , complex m, 4-H and $5-\mathrm{H}$), $2.00(1 \mathrm{H}$, complex m, 6-Ha), 2.41-2.52 (3 H , complex m, 3-H and $6-\mathrm{H}_{\mathrm{b}}$), $3.28\left(1 \mathrm{H}, \mathrm{d}, J 14.3, \operatorname{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.46(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}}\right), 4.13\left[1 \mathrm{H}\left(\mathrm{ABX}_{3}\right.\right.$ system $\left.), \mathrm{dq}, J 10.8, \mathrm{OCH}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right], 4.17$ [$1 \mathrm{H}\left(\mathrm{ABX}_{3}\right.$ system $\left.), \mathrm{dq}, \mathrm{OCH}_{\mathrm{x}} H_{\mathrm{y}}\right], 7.05\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 6^{\prime}} 2.8, J_{4^{\prime}, 5}$, 6.0 and $J_{4^{\prime}, 3^{\prime}} 8.0,4^{\prime}-\mathrm{H}$), 7.14-7.28 (2 H , complex m, $5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $7.50\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $13.9\left(\mathrm{CH}_{3}\right), 22.5(\mathrm{C}-5), 27.5\left(\mathrm{ArCH}_{2}\right), 35.3(\mathrm{C}-4), 38.6(\mathrm{C}-6), 41.1$(C-3), $61.4\left(\mathrm{OCH}_{2}\right), 61.9(\mathrm{C}-1), 125.9\left(\mathrm{C}-2^{\prime}\right), 127.0\left(\mathrm{C}-5^{\prime}\right), 128.2$ (C-4'), 132.0 (C-6'), 132.8 (C-3'), 136.5 (C-1'), 170,8 $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $206.9(\mathrm{C}-2) ; m / z\left(\mathrm{CI}^{+}\right) 356 / 358[(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}, 11 \%$], $339 / 341\left(\mathrm{MH}^{+}, 100\right), 259(25), 232(2), 185(13)$ and 169 (13) (Found: $\mathrm{MH}^{+}, 339.0596 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{3}$ requires $M, 339.0596$).

Ethyl 1-(2-Bromobenzyl)-2-oxocyclopentanecarboxylate OMethyloxime 14a,-As for the preparation of compound 2a, ethyl 1-(2-bromobenzyl)-2-oxocyclopentanecarboxylate 13a $(2.80 \mathrm{~g}, 8.94 \mathrm{mmol})$ and O-methylhydroxylamine hydrochloride $(0.90 \mathrm{~g}, 10.73 \mathrm{mmol})$ were stirred at room temperature in pyridine ($10 \mathrm{~cm}^{3}$) for 24 h . Chromatography on silica gel with ethyl acetate-light petroleum ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent gave the title compound 14a as a clear, colourless oil $(2.57 \mathrm{~g}, 84 \%) ; R_{\mathrm{f}}$ (ethyl acetate-light petroleum, $1: 3, \mathrm{v} / \mathrm{v}) 0.53$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3060 \mathrm{w}$, 2980-2810s, 1725s (C=O), 1645w (C=N), 1565w, 1465m, 1440s, 1230s and $750 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.24(3 \mathrm{H}, \mathrm{t}, J$ $\left.7.1, \mathrm{CH}_{3}\right), 1.56-2.56(6 \mathrm{H}$, complex $\mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}$ and $5-\mathrm{H}), 3.36$ $\left(1 \mathrm{H}, \mathrm{d}, J 14.2, \mathrm{ArCH}_{\mathrm{a}}\right), 3.62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{ArCH}_{\mathrm{b}}\right), 3.91(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.17\left[1 \mathrm{H}, \mathrm{dq}\left(\mathrm{ABX}_{3}\right.\right.$ system $\left.), J 11.7, \mathrm{OCH}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right], 4.20$ $\left[1 \mathrm{H}, \mathrm{dq}\left(\mathrm{ABX}_{3}\right.\right.$ system $\left.), \mathrm{OCH}_{\mathrm{x}} H_{\mathrm{y}}\right], 7.03\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 6^{\prime}}, 1.7, J_{4^{\prime}, 5^{\prime}}$ 7.7 and $\left.J_{4^{\prime}, 3^{\prime}}, 8.0,4^{\prime}-\mathrm{H}\right), 7,17\left(1 \mathrm{H}, \mathrm{td}, J_{5^{\prime}, 3^{\prime}} 1.3\right.$ and $\left.J_{5^{\prime}, 6^{\prime}} 7.7,5^{\prime}-\mathrm{H}\right)$, $7.36\left(1 \mathrm{H}\right.$, dd, $\left.6^{\prime}-\mathrm{H}\right)$ and $7.51\left(1 \mathrm{H}\right.$, dd, $\left.3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.1\left(\mathrm{CH}_{3}\right), 22.0(\mathrm{C}-4), 27.9\left(\mathrm{ArCH}_{2}\right), 34.1(\mathrm{C}-5)$, $39.4(\mathrm{C}-3), 57.3(\mathrm{C}-1), 61.2\left(\mathrm{OCH}_{2}\right), 61.9\left(\mathrm{OCH}_{3}\right), 126.5\left(\mathrm{C}-2^{\prime}\right)$, 127.1 (C-5'), 128.1 (C-4'), $131.7\left(\mathrm{C}^{\prime} 6^{\prime}\right), 132.7\left(\mathrm{C}-3^{\prime}\right), 137.5\left(\mathrm{C}-1^{\prime}\right)$, $164.6(\mathrm{C}-2)$ and $173.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; m / z\left(\mathrm{CI}^{+}\right) 353 / 355\left(\mathrm{M}^{+}\right.$, 100%), 339/341 (8), 323/325 (2), 274 (27), 260 (2), 244 (15), 170 (11) and 128 (2) (Found: $\mathrm{M}^{+}, 354.0704 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}_{3}$ requires M, 374.0704).

Ethyl 1-(2-Bromobenzyl)-2-oxocyclohexanecarboxylate OMethyloxime 14b.-As for the preparation of compound $\mathbf{2 a}$, ethyl 1-(2-bromobenzyl)-2-oxocyclohexanecarboxylate 13b $(1.00 \mathrm{~g}, 2.95 \mathrm{mmol})$ and O-methylhydroxylamine hydrochloride $(0.30 \mathrm{~g}, 3.54 \mathrm{mmol})$ were stirred at room temperature for 24 h in pyridine ($10 \mathrm{~cm}^{3}$). Chromatography on silica gel with diethyl ether-light petroleum ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent gave the title compound 14b ($0.73 \mathrm{~g}, 67 \%$) as a clear, colourless oil; R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) $0.47 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3050w, 2930s, 2895m, 2880m, 2810w, 1720s ($\mathrm{C}=\mathrm{O}$), 1645w $(\mathrm{C}=\mathrm{N}), 1460 \mathrm{~s}, 1430 \mathrm{~s}$ and $750 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.18\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.23-1.78(6 \mathrm{H}$, complex m, $4-\mathrm{H}, 5-\mathrm{H}$ and $6-\mathrm{H}), 2.30\left(1 \mathrm{H}\right.$, ddd, $\left.3-\mathrm{H}_{\mathrm{a}}\right), 3.31\left(1 \mathrm{H}\right.$, ddd, $\left.3-\mathrm{H}_{\mathrm{b}}\right), 3.35(1$ $\left.\mathrm{H}, \mathrm{d}, J 14.3, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 3.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}}\right), 4.10[1 \mathrm{H}$ $\left(\mathrm{ABX}_{3}\right.$ system), dq, J 15.6, $\left.\mathrm{OCH}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right], 4.13$ [1 H (ABX ${ }_{3}$ system), dq, $\left.\mathrm{OCH}_{\mathrm{x}} H_{\mathrm{y}}\right], 7.03\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 6^{\prime}}, 2.3, J_{4^{\prime}, 5^{\prime}} 6.8$ and $\left.J_{4^{\prime}, 3^{\prime}} 7.9,4^{\prime}-\mathrm{H}\right), 7.19\left(2 \mathrm{H}\right.$, complex $\mathrm{m}, 5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right)$ and 7.51 (1 H , dd, $\left.J_{3^{\prime}, 5}, 1.1,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.0$ $\left(\mathrm{CH}_{3}\right), 22.8(\mathrm{C}-5), 24.0\left(\mathrm{ArCH}_{2}\right), 25.6(\mathrm{C}-4), 35.1(\mathrm{C}-6), 39.4(\mathrm{C}-$ 3), $54.7(\mathrm{C}-1), 61.0\left(\mathrm{OCH}_{2}\right), 61.5\left(\mathrm{CH}_{3}\right), 126.2\left(\mathrm{C}-2^{\prime}\right), 126.7(\mathrm{C}-$ $\left.5^{\prime}\right), 127.9$ (C-4'), 132.1 (C-6'), 132.7 (C-3'), 137.3 (C-1'), 158.8 $(\mathrm{C}-2)$ and $172.6(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{CI}^{+}\right), 368 / 370\left(\mathrm{M}^{+}, 100 \%\right)$, 338/340 (4), 228 (15), 258 (15), 243 (8), 217 (3) and 184 (8) (Found: MH^{+}, 368.0861. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{3}$ requires M, 368.0861).

Ethyl 3a-Methoxyamino-1,2,3,3a,8,8a-hexahydrocyclopent-[a]indene-8a-carboxylate 15a.-According to method A, ethyl 1-(2-bromobenzyl)-2-oxocyclopentanecarboxylate O-methyloxime 14 a ($200 \mathrm{mg}, 0.56 \mathrm{mmol}$) was treated with tributyltin hydride ($330 \mathrm{mg}, 0.56 \mathrm{mmol}$) and AIBN ($20 \mathrm{mg}, 0.11 \mathrm{mmol}$) in benzene ($37 \mathrm{~cm}^{3}$). Chromatography on silica gel with ethyl acetate-light petroleum ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent gave the hydroxylamine 15a as a single diastereoisomer as a clear colourless oil ($105 \mathrm{mg}, 0.38 \mathrm{mmol}, 68 \%$); R_{f} (ethyl acetate-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}) 0.39 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3010 \mathrm{w}, 2960 \mathrm{~s}, 2900 \mathrm{~m}, 2860 \mathrm{~m}$,
$2810 \mathrm{w}, 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1590 \mathrm{w}, 1470-1430 \mathrm{~m}$ and $1230 \mathrm{w} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1,33-1.42(1 \mathrm{H}$, complex m, $2-\mathrm{H}_{\mathrm{x}}$), 1.70-1.84 (2 H , complex m, $3-\mathrm{H}_{\mathrm{x}}$ and $2-\mathrm{H}_{\mathrm{y}}$), 1.95-2.09 (2 H , complex m, 1- H_{x} and $3-\mathrm{H}_{\mathrm{y}}$), 2.27-2.37 ($1 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}_{\mathrm{y}}$), $2.84\left(1 \mathrm{H}, \mathrm{d}, J_{8 \mathrm{x}, 8 \mathrm{y}} 16.2,8-\mathrm{H}_{\mathrm{x}}\right.$), $3.74\left(1 \mathrm{H}, \mathrm{d}, 8-\mathrm{H}_{\mathrm{y}}\right.$), 4.21 (2 $\left.\mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.14-7.26(3 \mathrm{H}$, complex m, 4-H, 7-H and $5-\mathrm{H}$ or $6-\mathrm{H}), 7.33-7.38(1 \mathrm{H}$, complex $\mathrm{m}, 6-\mathrm{H}$ or $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.2\left(\mathrm{CH}_{3}\right), 23.3$ (C-2), 37.3 (C-3), 41.0 (C-1), 43.9 (C-8), 58.8 (C-8a), 60.7 $\left(\mathrm{OCH}_{2}\right), 62.4\left(\mathrm{OCH}_{3}\right), 84.4(\mathrm{C}-3 \mathrm{a}), 124.2(\mathrm{C}-6), 124.5(\mathrm{C}-7)$, 126.8 (C-5), 128.1 (C-4), $142.3(\mathrm{C}-3 \mathrm{~b}), 144.5(\mathrm{C}-7 \mathrm{a})$ and 176.3 $(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{CI}^{+}\right) 276\left(\mathrm{MH}^{+}, 100 \%\right), 244$ (37), 229 (40), 170 (4) and 155 (11) (Found: $\mathrm{MH}^{+}, 276.1600 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $M, 276.1600$).

Ethyl 4a-Methoxyamino-1,2,3,4,4a,9a-hexahydrofluorene-9a-carboxylate 15b.-Ethyl 1-(2-bromobenzyl)-2-oxocyclohexanecarboxylate O-methyloxime 14 b ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$) was treated with tributyltin hydride ($475 \mathrm{mg}, 1.63 \mathrm{mmol}$) and AIBN ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) according to method A. Chromatography on silica gel with diethyl ether-light petroleum $(1: 4, \mathrm{v} / \mathrm{v})$ as eluent afforded the hydroxylamine $\mathbf{1 5 b}$ as a clear, colourless oil ($214 \mathrm{mg}, 0.74 \mathrm{mmol}, 90 \%$), R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}) 0.32 ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3262 \mathrm{w}, 3010 \mathrm{w}, 2920 \mathrm{~s}, 2850 \mathrm{~s}$, $2800 \mathrm{w}, 1710 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1600 \mathrm{w}, 1560 \mathrm{w}, 1500 \mathrm{~m}, 1480-1440 \mathrm{~s}$ and $1230 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.07\left(1 \mathrm{H}, \mathrm{qt}, J_{3 \mathrm{ax}, 3 \mathrm{eq}}=\right.$ $J_{3 \mathrm{ax}, 4 \mathrm{ax}}=J_{3 \mathrm{ax}, 2 \mathrm{ax}} 13.6$ and $\left.J_{3 \mathrm{ax}, 4 \mathrm{eq}}=J_{3 \mathrm{ax}, 2 \mathrm{eq}} 3.7,3-\mathrm{H}_{\mathrm{ax}}\right), 1.27(1$ $\mathrm{H}, \mathrm{td}, J_{4 \mathrm{ax}, 4 \mathrm{eq}} 13.6$ and $\left.J_{4 \mathrm{ax}, 3 \mathrm{eq}} 4.0,4-\mathrm{H}_{\mathrm{ax}}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$, $1.37\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 1.48\left(1 \mathrm{H}, \mathrm{qt}, J_{2 \mathrm{ax}, 2 \mathrm{eq}}=J_{2 \mathrm{ax}, 1 \mathrm{ax}} 13.6\right.$ and $\left.J_{2 \mathrm{ax}, 1 \mathrm{eq}}=J_{2 \mathrm{ax}, 3 \mathrm{eq}} 4.0,2-\mathrm{H}_{\mathrm{ax}}\right), 1.67\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}, 3-\mathrm{H}_{\mathrm{eq}}\right), 1.84(1 \mathrm{H}$, $\mathrm{td}, J_{1 \mathrm{ax}, 1 \mathrm{eq}} 13.6$ and $\left.J_{1 \mathrm{ax}, 2 \mathrm{eq}} 4.2,1-\mathrm{H}_{\mathrm{ax}}\right), 1.93\left(1 \mathrm{H}, \mathrm{ddd}, J_{4 \mathrm{eq}, 3 \mathrm{eq}}\right.$ $\left.4.8,4-\mathrm{H}_{\mathrm{eq}}\right), 2.39\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, $\left.1-\mathrm{H}_{\mathrm{eq}}\right), 2.61\left(1 \mathrm{H}, \mathrm{d}, J_{9 \mathrm{x}, 9 \mathrm{y}} 15.3,9-\right.$ $\left.\mathrm{H}_{\mathrm{x}}\right), 2.90\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.67\left(1 \mathrm{H}, \mathrm{d}, 9-\mathrm{H}_{\mathrm{y}}\right), 4.23(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{OCH}_{2}\right), 6.27(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.16-7.34(4 \mathrm{H}$, complex m, 5-H, 6$\mathrm{H}, 7-\mathrm{H}$ and $8-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.1\left(\mathrm{CH}_{3}\right)$, 21.8 (C-3), 21.9 (C-2), 28.4 (C-4), 35.7 (C-1), 42.8 (C-9), 54.7 (C$9 \mathrm{a}), 60.2\left(\mathrm{OCH}_{2}\right), 62.3\left(\mathrm{OCH}_{3}\right), 70.9(\mathrm{C}-4 \mathrm{a}), 124.2(\mathrm{C}-7), 125.0$ (C-8), 126.1 (C-6), 127.8 (C-5), 142.2 (C-4b), 142.8 (C-8a) and $175.0(\mathrm{C}=\mathrm{O}) ; m / z\left(\mathrm{EI}^{+}\right) 290\left(\mathrm{MH}^{+}, 80 \%\right), 260(32), 243(100)$, 199 (3) and 169 (36) (Found: $\mathrm{MH}^{+}, 290.1756 . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $M, 290.1756$).

2-(2-Bromobenzyl)cyclohexanone 16.-Pyrrolidin-1-ylcyclo-hex-1-ene ($2.57 \mathrm{~g}, 17.00 \mathrm{mmol}$) and 2-bromobenzyl bromide $(4.25 \mathrm{~g}, 17.00 \mathrm{mmol})$ were heated at reflux temperature in benzene ($30 \mathrm{~cm}^{3}$) for 6 h . A solution of sodium acetate-acetic acid-water ($1: 2: 2 ; 25 \mathrm{~cm}^{3}$) was added to the reaction mixture which was then heated at reflux for 2 h . The mixture was then diluted with water and extracted with diethyl ether. The organic extracts were dried and evaporated under reduced pressure. Chromatography of the residue on silica gel with diethyl etherlight petroleum $(1: 4, \mathrm{v} / \mathrm{v})$ as eluent afforded the product 16 as a clear colouress oil ($3.16 \mathrm{~g}, 11.84 \mathrm{mmol}, 70 \%$); R_{f} (diethyl etherlight petroleum, $1: 4, \mathrm{v} / \mathrm{v}) 0.34 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3025 \mathrm{w}, 2930 \mathrm{~s}$, $2860 \mathrm{~s}, 1700 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1560 \mathrm{w}, 1465 \mathrm{~s}, 1440 \mathrm{~s}$ and $745 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.39\left(1 \mathrm{H}\right.$, complex dddd, $J_{3 \mathrm{ax}, 2 \mathrm{ax}}=J_{3 \mathrm{ax}, 4 \mathrm{ax}}=$ $J_{3 \mathrm{ax}, 4 \mathrm{eq}} 3.6$ and $\left.J_{3 \mathrm{ax}, 3 \mathrm{eq}} 12.0,3-\mathrm{H}_{\mathrm{ax}}\right), 1.60\left(2 \mathrm{H}\right.$, complex m, $4-\mathrm{H}_{\mathrm{ax}}$ and $\left.5-\mathrm{H}_{\mathrm{ax}}\right), 1.80\left(1 \mathrm{H}\right.$, complex dddd, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 2.04(2 \mathrm{H}$, complex $\mathrm{m}, 5-\mathrm{H}_{\mathrm{eq}}$ and $\left.3-\mathrm{H}_{\mathrm{eq}}\right), 2.30\left(1 \mathrm{H}\right.$, complex ddd, $J_{6 \mathrm{ax}, 5 \mathrm{ax}} 10.2$, $J_{6 \mathrm{ax}, 5 \mathrm{eq}} 5.8$ and $\left.J_{6 \mathrm{ax}, 6 \mathrm{eq}} 12.9,6-\mathrm{H}_{\mathrm{ax}}\right), 2.39(1 \mathrm{H}$, complex m, 4$\left.\mathrm{H}_{\mathrm{eq}}\right), 2.54\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{a}, 2 \mathrm{ax}} 8.1\right.$ and $\left.J_{\mathrm{a}, \mathrm{b}} 13.7, \mathrm{ArCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 2.66(1$ H , complex m, 6-H H_{q}), $3.34\left(1 \mathrm{H}\right.$, dd, $\left.J_{\mathrm{b}, 2 \mathrm{ax}} 5.2, \mathrm{ArCH}_{\mathrm{a}} H_{\mathrm{b}}\right), 7.03$ (1 H , ddd, $J_{4^{\prime}, 6^{\prime}} 2.1, J_{4^{\prime}, 5^{\prime}} 7.0$ and $\left.J_{4^{\prime}, 3^{\prime}}, 7.9,4^{\prime}-\mathrm{H}\right), 7.18(1 \mathrm{H}$, ddd, $J_{5^{\prime}, 3^{\prime}} 1.1$ and $\left.J_{5^{\prime}, 6^{\prime}} 7.6,5^{\prime}-\mathrm{H}\right), 7.23\left(1 \mathrm{H}\right.$, dd, $\left.6^{\prime}-\mathrm{H}\right)$ and 7.49 ($1 \mathrm{H}, \mathrm{dd}, 3^{\prime}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.2$ (C-5), 28.1 $(\mathrm{C}-4), 33.6(\mathrm{C}-3), 35.6\left(\mathrm{ArCH}_{2}\right), 42.2(\mathrm{C}-6), 50.5(\mathrm{C}-2), 124.6(\mathrm{C}-$ 2'), 127.1 (C-5'), 127.7 (C-4'), 131.7 (C-6'), 132.6 (C-3'), 139.6 $\left(\mathrm{C}-1^{\prime}\right)$ and $211.8(\mathrm{C}-1) ; m / z\left(\mathrm{CI}^{+}\right) 284 / 286\left[\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}\right.$,
100%], 267/269 ($\left.\mathrm{MH}^{+}, 31\right), 187(53)$ and 169/171 (2) [Found: $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}, 284.0650 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}$ requires $\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$, 284.0650].

2(2-Bromobenzyl)cyclohexanone O-Methyloxime 17.-As for compound 2a, 2-(2-bromobenzyl)cyclohexanone 16 (1.00 g , 3.75 mmol) and O-methylhydroxylamine hydrochloride $(0.47 \mathrm{~g}$, 5.62 mmol) were stirred overnight at room temperature in pyridine ($10 \mathrm{~cm}^{3}$). Chromatography on silica gel with diethyl ether-light petroleum ether ($1: 9, \mathrm{v} / \mathrm{v}$) as eluent gave a mixture of isomers of the oxime ether 17 as a clear colourless oil $(0.86 \mathrm{~g}$, $2.93 \mathrm{mmol}, 78 \%$); R_{f} (diethyl ether-light petroleum, $1: 4, \mathrm{v} / \mathrm{v}$) 0.31 and 0.28 ; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3030 \mathrm{w}, 2980 \mathrm{w}, 2930 \mathrm{~s}, 2880 \mathrm{~s}$, $2805 \mathrm{w}, 1650 \mathrm{w}(\mathrm{C}=\mathrm{N}), 1560 \mathrm{w}, 1465 \mathrm{~s}, 1440 \mathrm{~s}, 1050 \mathrm{~s}, 1020 \mathrm{~s}$ and 750s.

Major isomer $\left(R_{\mathrm{f}}=0.31\right)$: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.26-1.79\left(6 \mathrm{H}\right.$, complex m, $2-\mathrm{H}_{\mathrm{ax}}, 3-\mathrm{H}_{\mathrm{ax}}, 3-\mathrm{H}_{\mathrm{eq}}, 4-\mathrm{H}_{\mathrm{ax}}, 5-\mathrm{H}_{\mathrm{ax}}$ and $\left.5-\mathrm{H}_{\mathrm{eq}}\right), 2.04\left(1 \mathrm{H}\right.$, ddd, $J_{6 \mathrm{ax}, 5 \mathrm{eq}} 4.4, J_{6 \mathrm{ax}, 5 \mathrm{ax}} 9.9$ and $J_{6 \mathrm{ax}, 6 \mathrm{eq}} 14.0$, $\left.6-\mathrm{H}_{\mathrm{ax}}\right), 2.56\left(1 \mathrm{H}\right.$, br $\left.\mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 2.74\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{x}, 2 \mathrm{ax}} 8.7\right.$ and $J_{\mathrm{x}, \mathrm{y}}$ 13.7, $\mathrm{ArCH}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$), $2.91(1 \mathrm{H}, \mathrm{m}$ overlapping with minor isomer, $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 3.26\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{y}, 2 \mathrm{ax}} 5.5, \mathrm{ArCH}_{\mathrm{x}} H_{\mathrm{y}}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $7.03\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 6^{\prime}}, 2.3, J_{4^{\prime}, 5}, 6.9$ and $\left.J_{4^{\prime}, 3^{\prime}}, 7.8,4^{\prime}-\mathrm{H}\right), 7.16-7.23(2$ $\mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}$ and $\left.6^{\prime}-\mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 24.3(\mathrm{C}-5), 24.5(\mathrm{C}-4), 26.2(\mathrm{C}-3), 32.4\left(\mathrm{ArCH}_{2}\right), 37.1$ (C-6), $42.2(\mathrm{C}-2), 61.0\left(\mathrm{OCH}_{3}\right), 124.9\left(\mathrm{C}-2^{\prime}\right), 126.9\left(\mathrm{C}-5^{\prime}\right), 127.5$ (C-4'), 131.7 (C-6'), 132.7 (C-3'), 140.2 (C-1') and 160.9 (C-1).

Minor isomer $\left(R_{f}=0.28\right)$: $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $1.26-1.79\left(6 \mathrm{H}\right.$, complex $\mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}, 3-\mathrm{H}_{\mathrm{ax}}, 3-\mathrm{H}_{\mathrm{eq}}, 4-\mathrm{H}_{\mathrm{ax}}, 5-\mathrm{H}_{\mathrm{ax}}$ and $\left.5-\mathrm{H}_{\mathrm{eq}}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{ax}}\right), 2.30\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArC} \mathrm{H}_{2}\right), 2.90(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}_{\mathrm{eq}}$ and $\left.6-\mathrm{H}_{\mathrm{eq}}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.03\left(1 \mathrm{H}, \mathrm{ddd}, J_{4}, 6,2.3\right.$, $J_{4^{\prime}, 5^{\prime}} 6.9$ and $\left.J_{4^{\prime}, 3^{\prime}} 7.8,4^{\prime}-\mathrm{H}\right), 7.16-7.23\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$ and $7.50\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 21.0$ (C-5), $26.8(\mathrm{C}-4), 28.8(\mathrm{C}-3), 28.9\left(\mathrm{ArCH}_{2}\right), 33.6(\mathrm{C}-2), 36.4$ $(\mathrm{C}-6), 60.6\left(\mathrm{OCH}_{3}\right), 124.9\left(\mathrm{C}-2^{\prime}\right), 127.0\left(\mathrm{C}-5^{\prime}\right), 127.7\left(\mathrm{C}-4{ }^{\prime}\right), 130.9$ (C-6'), $132.5\left(\mathrm{C}-3^{\prime}\right), 139.2\left(\mathrm{C}-1^{\prime}\right)$ and $161.4(\mathrm{C}-1) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}^{+}\right)$ 296/298 ($\mathrm{MH}^{+}, 100 \%$), 266 (5), 216 (45), 186 (12), 171 (5) (Found: $\mathrm{MH}^{+}, 296.0650 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrNO}$ requires $M, 296.0650$).

9b-Methoxyamino-1,2,3,3a,8,8a-hexahydrocyclopent[a]indene 18.-2-(2-Bromobenzyl)cyclohexanone O-methyloxime $17(300 \mathrm{mg}, 1.01 \mathrm{mmol})$ was treated with tributyltin hydride (590 $\mathrm{mg}, 2.03 \mathrm{mmol}$) and AIBN ($33 \mathrm{mg}, 0.02 \mathrm{mmol}$) in benzene (51 $\mathrm{cm}^{3}, 0.02 \mathrm{~mol} \mathrm{dm}^{-3} 17$) according to method A. Chromatography on silica gel with diethyl ether-light petroleum $(1: 9, \mathrm{v} / \mathrm{v})$ yielded the hydroxylamine $18(127 \mathrm{mg}, 0.59 \mathrm{mmol}, 58 \%)$ as a pale yellow oil; R_{f} (diethyl ether-light petroleum, $1: 9, \mathrm{v} / \mathrm{v}$) 0.31 ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400 \mathrm{br}\left(\mathrm{H}_{2} \mathrm{O}\right), 3210 \mathrm{br} \mathrm{w}, 3030 \mathrm{w}, 2910 \mathrm{~s}, 2850 \mathrm{~s}$, $2800 \mathrm{~m}, 1630-1580 \mathrm{w}, 1450 \mathrm{~m}$ and $760 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$ and COSY; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.15\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 1.20\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.36(1$ $\mathrm{H}, \mathrm{dtt}, J_{3 \mathrm{ax}, 4 \mathrm{eq}}=J_{3 \mathrm{ax}, 2 \mathrm{eq}} 3.5, J_{3 \mathrm{ax}, 4 \mathrm{ax}}=J_{3 \mathrm{ax}, 2 \mathrm{ax}} 9.4, J_{3 \mathrm{ax}, 3 \mathrm{eq}} 13.0$, $\left.3-\mathrm{H}_{\mathrm{ax}}\right), 1.47\left(1 \mathrm{H}, \mathrm{dtt}, J_{3 \mathrm{eq}, 2 \mathrm{eq}}=J_{3 \mathrm{eq}, 4 \mathrm{eq}} 3.4, J_{3 \mathrm{eq}, 4 \mathrm{ax}}=J_{3 \mathrm{eq}, 2 \mathrm{ax}}\right.$ $\left.6.7,3-\mathrm{H}_{\mathrm{eq}}\right), 1.60\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 1.88(1 \mathrm{H}$, ddd, $\left.J_{1 \mathrm{ax}, 2 \mathrm{eq}} 4.1, J_{1 \mathrm{ax}, 2 \mathrm{ax}} 9.6, J_{1 \mathrm{ax}, 1 \mathrm{eq}} 13.9,1-\mathrm{H}_{\mathrm{ax}}\right), 1.96(1 \mathrm{H}$, ddd, $\left.J_{1 \text { eq,2eq }} 4.2, J_{1 \text { eq. } 2 \mathrm{ax}} 6.8,1-\mathrm{H}_{\text {eq }}\right), 2.48\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{a}}\right), 2.52(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{5 \mathrm{x}, 4 \mathrm{a}} 4.5, J_{5 \mathrm{x}, 5 \mathrm{y}} 15.0,5-\mathrm{H}_{\mathrm{x}}\right), 3.09\left(1 \mathrm{H}, \mathrm{dd}, J_{5 \mathrm{y}, 4 \mathrm{a}} 6.1,5-\mathrm{H}_{y}\right)$, $3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.17-7.30(4 \mathrm{H}$, complex m, 6-H, $7-\mathrm{H}, 8-\mathrm{H}$ and $9-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 22.1$ (C-3), 23.3 (C-4), 28.3 (C-2), 30.2 (C-1), 36.0 (C-5), 41.0 (C-4a), $62.9\left(\mathrm{OCH}_{3}\right), 70.5(\mathrm{C}-9 \mathrm{~b}), 123.1$ (C-7), 125.7 (C-6), 126.1 (C-8), 127.6 (C-9), 143.4 (C-9a) and 145.3 (C-5a); $m / z\left(\mathrm{CI}^{+}\right) 218\left(\mathrm{MH}^{+}, 15 \%\right), 186(15), 171$ (100) and 129 (12) (Found: $\mathrm{MH}^{+}, 218.1545 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ requires M, 218.1545).

Acknowledgements

We thank the SERC and Merck, Sharp and Dohme for a
studentship to S. E. B. and the SERC Mass Spectrometry Service at Swansea University.

References

1 C. P. Jasperese, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237.

2 E. J. Corey and S. G. Pyne, Tetrahedron Lett., 1983, 24, 2821.
3 D. J. Hart and F. L. Seely, J. Am. Chem. Soc., 1988, 110, 1631; P. A. Bartlett, K. L. McLaren and P. C. Ting, 1988, 110, 1633; K. A. Parker, D. M. Spero and J. Epp, J. Org. Chem., 1988, 53, 4628; D. H. R. Barton, P. I. Dalko Stokes and A. J. Whittle, J. Chem. Soc., Perkin Trans. I, 1992, 2471; J. Marco-Contelles, A. Martinez-Grau, M. Bernabe, N. Martin and C. Seoane, Syn. Lett., 1991, 165; J. Marco-Contelles, L. Martinez and A. Martinez-Grau, Tetrahedron: Asymmetry, 1991, 2, 961; J. Marco-Contelles, P. Ruiz, L. Martinez and A. Martinez-Grau, Tetrahedron, 1993, 49, 6669; J. Hatem, C. Henriet-Bernard, J. Grimaldi and R. Maurin, Tetrahedron Lett., 1992, 33, 1057; N. S. Simpkins, S. Stokes and A. J. Whittle, J. Chem. Soc., Perkin Trans. 1, 1992, 2417; G. Pattenden and D. J. Schultz, Tetrahedron Lett., 1993, 34, 6787; A. H. Ingall, P. R. Moore and S. M. Roberts, J. Chem. Soc., Chem. Commun., 1994, 83; T. Naito, K. Tajiri, T. Harimoto, I. Ninomiya and T. Kiguchi, Tetrahedron Lett., 1994, 35, 2205.
4 S. E. Booth, P. R. Jenkins, C. J. Swain and J. B. Sweeney, J. Chem. Soc., Chem. Commun., 1991, 1248.

5 E. J. Enholm, J. A. Burroff and L. M. Jaramillo, Tetrahedron Lett., 1990, 31, 3727.
6 G. Stork and R. Mook, Tetrahedron Lett., 1986, 4529; J. Am. Chem. Soc., 1987, 109, 2829; J. Ardisson, J. P. Ferezou, M. Julia and A. Pancrazi, Tetrahedron Lett., 1987, 28, 2001; H. Pak, I. I. Canalda and B. Fraser-Reid, J. Org. Chem., 1990, 55, 3009; J. J. Gaudino and C. S. Wilcox, J. Am. Chem. Soc., 1990, 112, 4374.

7 K. Amornraksa, D. Barr, G. Donegan, R. Grigg, P. Ratananukul and V. Sridharan, Tetrahedron, 1989, 45, 4649.
8 D. Janietz and W. D. Rudolf, Tetrahedron, 1989, 45, 1661.
9 M. P. Cooke and R. K. Widener, J. Org. Chem., 1987, 52, 1381; Compound 10 b was prepared by the same method starting from ethyl acetoacetate.
10 E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 273;S.-J. Chang, D. McNally, S. Shary-Tehrany, Sister M. J. Hickey and R. H. Boyd, J. Am. Chem. Soc., 1970, 92, 3109; A. C. Cope and W. R. Schmitz, J. Am. Chem. Soc., 1950, 72, 3056.

11 M. Nagai, J. Lazor and C. S. Wilcox, J. Org. Chem., 1990, 55, 3440. 12 W. C. Still, M. Khan and A. Mitra, J. Org. Chem., 1978, 43, 2932.

Paper 4/02891K
Received 16th May 1994
Accepted 11 th August 1994

